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1.1 BJT Biasing: Biasing in BJT Amplifier Circuits: The Classical Discrete circuit bias
(Voltage — divider Bias), Biasing using Collector to Base Feedback bias.

1.11 Introduction:

The most important application of a transistor is its use in electronic circuits as amplifier.
Amplification is the process of strengthening of a weak signal i.e.; increasing its amplitude,
without distortion of its waveshape. For faithful amplification, it is essential that the emitter
base junction remains forward biased and the collector-base junction remains reverse biased
throughout the signal period. If the junctions are not properly biased, there would be
distortion at the output voltage. The transistor to work as an amplifier with faithful
amplification, it is to be operated in active region (the region between cut off and saturation
region). The point of intersection of d.c load line with an output characteristic at a certain
level of base current is termed as operating point. It is also referred as quiescent point or Q-
point. It represents the d.c bias condition, in the absence of input signal. Its coordinates give
the values of Vcg and Ic, corresponding to the value of Ig at which the output characteristic is
plotted. Different types of biasing circuits are: 1) fixed current bias method or base resistor
method ii) collector to base bias method iii) Self-bias or voltage divider bias method. The
Voltage divider bias also called as emitter current bias configuration is most widely used of
all the bias configurations. In this method of biasing a transistor, Resistors are connected
across the bias battery so that they form a potential divider. The voltage drop Vg remains
fairly constant and provides the necessary fixed bias for the emitter base junction. Current Ig
flows into the base and the emitter diode is always forward biased. Once the circuit is
properly biased, the weak a.c signal to be amplified is applied across the input terminals of
the amplifier circuit and the output is taken across the load resistor at the output terminals of

the amplifier.

), BSE 93053 TSN D BT 0DWOWT W50, ATREEF ).
€30 EWONT® €3N TV WFT. B0 DTCII® 0TI TNWED ROFIeI3),
WOBBAIE oD ONG, 90W3 9T SBVOMOITEW )TRBWIDE 93T
T30, BB, AIBT. ITAOB/E RGE NN, BRTRPRI WXA° 20T
SBNOWT, RVFWeIDOTW TRPRIITW 0I), AONYD®T-2HXA* HOF® AN,°
923N TR, De3A*E WFWINOW TRRTIZR. HBOFTIS ADON BT w3
DPBABT, BEVLE® P38, LTRIRRI,IT. )T AOTBE
1
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JXBTAD), (TEF SF° WNI), AT FIIT SIS WD)
FTOODEDWEDRE). A Tyeoo®ET 20T DDED,, 0T, REI €5°
MPOTLRRVRODN 8. A St HBOD HRTBIT D0THE,  e3:_TeE3on®
@O0’ DOTD TEOANITIZE. VWY, A0 WA 0EY 9P DTS-
DOA0EF DOTR FEODLVMIZT. VT A,E® AN, 9DIA,B0D), d. c.
BFZ ABODTY, F3ARAITW.  BWT ATET0TNS) IBOD 35243,
e9BIMIDIVT B 53 NI, 802 aJPOMFI, LTI 3, AW3E), TBE, &
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UGd fdhar 99 e Ugd i) dadex ¢ o9 U&UT UGd iii) 0-98 fdhdr gleed
fSRIer UeUrd Ugd. IeE qad Joug kel Sigl Ted oiid, § 94 gave
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G&faTc! 9B} NG shedd 3Ted Suldhe d YU fAUTSd TUR Hdld. &lecs SiU
VB S0 fRR A MM emitter S SR 3Maaes YT qdUe UM #d. add
Gﬂﬂ@aﬂqﬁam\}ﬂﬁ[emitter diodeq@ﬂﬂ%qm &ﬂ% WWWUM
3R, HHHad T Rt yaftfq w0t atfe Ffhe sge efife sieiga @y e anfor
33Ty I 3HM3cYe ciia I A1 Uiy Siiaig vad Mg

1.12 The Classical Discrete — Circuit Bias Arrangement:

The technique consists of supplying the base of the transistor with a fraction of the supply
voltage Vcc through the voltage divider Ri, Ro. In addition, a resistor Rg is connected to the

emitter.

F
l"{.'t.'

Tr-:u: J y
Vg = Vi Ry
R+ R

4 Re:

| | e

L
TR

--a R, + R, e

R:j

The current f; can be determined by writing a Kirchhoft loop equation for the basc—cmitter
ground loop, labeled L, and substituting /5 = {,/(f+1):



MODULE 1:

jo= Ve Ve
TR A R/(BE D)

To make 7 insensitive to temperature and variation,” we desi gn the circuit to satisfy the
following two constraints:

Vag 2 Vg
Ry
Re = !3—_‘_“?
For a given value of the supply voltage Vcc, the higher the value we use for Vgg, the lower
will be the sum of voltages across Rc and the collector-base junction (Vcg). On the other
hand, we want the voltage across Rc to be large in order to obtain high voltage gain and large
signal swing (before transistor cut off). We also want Vcg (or Vcg) to be large to provide a
large signal swing (before transistor saturation). As a rule of thumb, one designs for Vgs
about (1/3) Vcc, Ves (or Veg) about (1/3) VCC, and IcRc about (1/3)Vec. Ig is made
insensitive to variations in 3 and could be satisfied by selecting Rg small. This in turn is
achieved by using low values for R; and R>. Lower values for R; and R> , however, will mean
a higher current drain from the power supply, and will result in a lowering of the input
resistance of the amplifier (if the input signal is coupled to the base), which is the trade-off
involved in this part of the design. It should be noted that we want to make the base voltage
independent of the value of B and determined solely by the voltage divider. This will
obviously be satisfied if the current in the divider is made much larger than the base current.
Typically one selects Ry and R» such that their current is in the range of I to 0.11g .
Further insight regarding the mechanism by which the bias arrangement of above figure
stabilizes the dc emitter (and hence collector) current is obtained by considering the feedback
action provided by Rg. Consider that for some reason the emitter current increases. The
voltage drop across R , and hence Vg will increase correspondingly. Now, if the base voltage
is determined primarily by the voltage divider R; Ry, which is the case if Rp is small, it will
remain constant, and the increase in Vg will result in a corresponding decrease in Vge. This in
turn reduces the collector (and emitter) current, a change opposite to that originally assumed.

Thus, R provides a negative feedback action that stabilizes the bias current.

ROV &332 )RR 20T ADDE D, EODST,, DY) eI WFRIES
08,8 3005, TR SAE DI), AOMYDWT-aNRY HWOFT® (Vep) SV TR,
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1. (1/3) Vee , Ve (8983830 Ver) 297, (1/3) Ve, 803), IeRe 207, (1/3) Vee 20,0T3)
Vs, [r 93), B SAS W3RN B0 TBIT03e0N 300BEIRMI T
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XY, BT Rp ALY, 330, BT A TNBI3 T, aNI), )Y BW,E CIISINIDRIT
YPINR TOCRIMI L Q. YT T30N FONMYBT (eDI), BRTRLRIR)
BT/, TR  VWIZE, DPODI: NRPAT AWT, BT z000
W 3NN, R BF03 3)e90Besn3),; AJBNRPRIE ST003,T 5313803
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RAST Flees R idedr Jearrdl, smet st fordd sRd Jed aroRal,
fadd ST SR 0T Heidex-oF SaRM (@INTe) dR Glecold JHIUN 3. gaRIPbS,
TR I glees @y M1 Alear e [T (@ I%iER ST HRuagdh) ww
HRUGTST 3R, l. 3fieigT Flees HISAT YHIUNT UIfeel. el Sdid U HidT Rigd
T (TR Tqaaan onefh) e HRuarét veB (fdhat VCE) AieaT 3fasd. SiTaa
a9 ®UE, VBB 1! U& {89 (1/3) vec §8d, veB (fddl VCE) 984 (1/3) VCC
§Ed, 30T ICRC §ET (1/3) VCC. 3% & Aehd fafdudiasd srdaeTsita dd Srd 3Mfor
3Rl T Maga I 1% Wdhd. Ee R1 10T R2 13T HHl G dT0Re A1l
3{T]. R1 31O R2 T3t HHI HeW , A1, vl Ras! URH I 1 ATal g 31 31 g,
3for gRkomed g 39ge UfdeR &t g (34Yc Rud duar Siesam), o
ST == a1 UIEed Tddd ¢8-3i1h 3MTg. B W&Td Udd Ulfgsl dI STUeTe 39 glecsl
ST IR s 99a1ad 3118 30T Blees [S@regR quiun fHufa od ofg. §
WPy fquTSiid 7ed aTe] 99 o1 U&T U A1d $hd IR THTY! giad. ATYRUYU Tdh
fAasal R1 30T R2 SR & e T SIS d 0. 11 T YU 31T,

T TAVGR aRd MTpcird T&aTc! IR SR It (30T BUHT HaideR) dad™
fRR PR TraTEddt i Afgdt 3RS §R UaM dbaied] IR HoT faR S U
B! S, BTET HRUMKT emitter ITH ATGd (TR BRI, 3RE NATg @lecol GIT, 0T
U VE Yfid aTe gisd. 3T, 9 Giec a9 WS Slecs [AHTSd R1 R2, O 3R
A8 A TR HY 38, O Jad Asid, T VE ALY 91 VBE AL Fafdd HH glsd.
Y TeRTRIGRT (30T emitter) TAH HH, I3 ToId 6RA B AC Sad. AP, RS
TP AHRIAD YT fohal UaH of Taus aadm QIR .

Example: To design the bias network for the amplifier in the below figure to establish a
current [g=1 mA using a power supply Vcc = +12 V. The transistor is specified to have a

nominal 3 value of 100.

R,
iy

-
R
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Solution: We shall follow the rule of thumb mentioned above and allocate one-third of the
supply voltage to the voltage drop across R2 and another one-third to the voltage drop across

Rc , leaving one-third for possible signal swing at the collector. Thus,
Vg =+4V

"’rﬁ 4_ ‘IBL = 3.3 1'1"’

And Rg is determined from

We select a voltage divider current of 0.11g = 0.1 x 1 = 0.ImA. Neglecting the base current,

we find

12,
R+ Ry = o= = 120kQ
and
R, ., .
ml e = -Il W
Thus K, = 40 kLl and &, = 80 kL2
Finding the value for Ig
p= =07 _ 099~ 1maA
3.3+0027
And _
R, - 12=Ve
7.
Substituting Ic = 0.99 x 1 = 0.99mA,
Re = @ = 4k

Note: If two power supplies are used for classical bias arrangement, then
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+ Fioe

= g+ 1 / Viee— Vg
[

T Ret Ry (B A1)

Vee Ve

] T¢f£-+fg=15

AW
&
&

Wy

O Ve = Vge + IgRy

1.13 Biasing Using collector to base feedback bias:

Figure below shows a simple but effective alternative biasing arrangement suitable for
common-emitter amplifiers. The circuit employs a resistor Rg connected between the
collector and the base. Resistor Rg provides negative feedback, which helps to stabilize the

bias point of the BJT.

FINS W 3jod) AEN0Ts-00eEIT® €303 3, ONNEPT APTe00E ATP00E ST
ROTNTID  BOJEOD JVFT03  a35a38,00, SRDANIT. AT EE
ROMYBT NI, A° ST AWOBTE 2OTD DTBRLET €326 D3RRI T.
BySCREET BSDE IFo03, T 33FPADODRD, WBNAIT, VR DB E30D
BFD03 WO, AJNAPEE) AT 30833
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T P AAF-UHeR adaidt amg ueh et uRg guTe! ol gamrdt e
GRifad. Tfthe Haaex AT 9 G Hrac Uh UoRIY® RET ISR, IR 3Ra!
THRIAD YU Y B, O dioic i garard! fager fRR HRuar ged .

Voo Ve

'y
i T#f{:"‘ ITB =:E
3 %
— T O Vo = Vpe + IgRp
Rg IB4*§RH I: l’Ic
Vae !¢f}s
{a) (b}

The circuit employs a resistor Rg connected between the collector and the base. Resistor Rp

provides negative feedback, which helps to stabilize the bias point of the BJT.

Analysis: From fig(b) shows

Ve = TR+ TR+ Vi

f R+ Ry+ Vg

i
B+1
Th h ) I I = Vee—Vae ) b

us, the emitter current Ig is E T R+ Ry/(BE1) given by

It follows that to obtain a value of Ig that is insensitive to variation of 3, we select Rg / (B + 1)
<< Rc. Note, however, that the value of Rg determines the allowable signal swing at the

collector since

Ry

Viep = IpRg = fr;'ﬁ+1
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1.2 SMALL SIGNAL OPERATIONS AND MODELS:

Contents: Collector current and Transconductance, Base current and input resistance, emitter
current and input resistance, voltage gain, separating the signal and DC quantities, the hybrid

7 model and T model.

Having learned the basis for the operation of the BJT as an amplifier, we now take a closer
look at the small-signal operation of the transistor. Toward that end, consider once more the
conceptual amplifier circuit shown in Fig. 1(a). Here the base—emitter junction is forward
biased by a dc voltage VBE (battery). The reverse bias of the collector—base junction is
established by connecting the collector to another power supply of voltage VCC through a
resistor RC. The input signal to be amplified is represented by the voltage source vbe that is
superimposed on VBE. We consider first the dc bias conditions by setting the signal vbe to
zero. The circuit reduces to that in Fig. 1(b), and we can write the following relationships for

the dc currrents and voltages:

€30 FODT® 3N DB E30D FoOHREWTBORN 37T, TOIVTROT o)
N EY RSE RED,-ROTES TOOEFTBOND, B3BD0T LTI 3. 3
3R, 283 1 () I, 3REDATVE BOTO,M0 30 FONT® JBTREET €930,
D30, FSONBR. V), 2CA*-eIEIT® BOFD® 20T DA a3ELE3C 2T DY
(239583D) DO 2BNOWT, BFHD0Z BRODTW. RONYB/T-LCA® BOFT, G030,
VTR0 AONYBTRI, o2 A0 aNI3ROTD ATWsT® FPT,TN
QBREET B SDPOT RFOWIE RIS eNRDOT AR, BIZE. BREALWCTT
BRLEF AN ), DY 003 RATYEOTRRLA® 200BRE a3, 238
RO )W) TIIPAIZR. AN DB FRIsT, BRODAIE eNRDT o))
BRTE) B BFH3 BORINT ), BONBRIZC 3. AB;eEX° 233 1 (D) 3¢,
I, TR ORI, DI, B TTOL P NI, 33 25,PM0N Do)
FTPNS ROWOFPNP ), WTODWBIT:

ST TN YR SR BUH SUH YdedHar, 3Tl Sdl <lierex=l
TeT-RUd TRIAIR TRBTSA &l Sal. T g, {1 (Uh) Hed grifaa I=nies g
fche 5T Udhal [daR H1. 39 99-UfHeR Sia-H Je Sl @lecs VBE (FERT) GR U&dTd!
3R, ISR SiaRM Iee Ia¥ig Udh UfaRIue SR ATEHIH @lees VCC gaam

10
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dIel RasT NegieR! drac He- RN Bt 3. fawiivl sxvamd! $9qe Rfua
VBE W superimposed 318 &1 @lecs HId vbe §R SIS S, TI0T R vbe T e
& UYH S qaug ot faaR. Afhe Fig. 1 (@) AL &1 HH! gId, M1 el St
currents&ﬁfafoglvevl G NI ﬂ'_q;‘ifﬁ“l_ﬁw:

Fig 1(a) Conceptual circuit to illustrate the operation of the transistor as an amplifier. (b) The

circuit of (a) with the signal source vbe eliminated for dc (bias) analysis.

Iy = I./5

Vee = Vee—1cRe
1.21 The Collector current and Transconductance:

If a signal vbe is applied as shown in Fig. 1(a), the total instantaneous base—emitter voltage

vBE becomes
vpe = Ve +vp,
Correspondingly, the collector current becomes

. Sy (Ve +vp )"V
I{H — .!Js,e 8E T — 15.8 BE T

Vaps' Vr vpa’Vr
e

= Is.e
i".\fr'l']-

ir= 1€

Now, if vbe << VT, we may approximate the above equation as,

11
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f‘(‘ e ;('(1 +_‘II'_EE)

T

Here we have expanded the exponential in ic equation in a series and retained only the first
two terms. This approximation, which is valid only for vy less than approximately 10 mV, is
referred to as the small-signal approximation. Under this approximation, the total collector

current is given by the above equation and rewritten as

Thus the collector current is composed of the dc bias value IC and a signal component ic

. o

Gl r Uhe
Vr

This equation relates the signal current in the collector to the corresponding base—emitter

signal voltage. It can be rewritten as

i. = ] .
g EmUbe where gm is called the transconductance,

' Ve
g”i’ = F
:

We observe that the transconductance of the BJT is directly proportional to the collector bias
current IC. Thus to obtain a constant predictable value for gm, we need a constant predictable

IC. Finally, we note that BJTs have relatively high transconductance.

A graphical interpretation for gm is given in Fig.1( ¢ ) , where it is shown that gm is equal to

the slope of the ic —vgE characteristic curve at ic = Ic (i.e., at the bias point Q). Thus,

Ji

dvge ie=I

g.’“ =

12
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Slope = g,

ter————————— |77/77X/77§/7777*f

Fig: 1(c): Linear operation of the transistor under the small-signal condition: A small signal
vbe With a triangular waveform is superimposed on the dc voltage Vge. It gives rise to a
collector signal current ic, also of triangular waveform, superimposed on the dc current Ic.

Here, ic = gm Ve, Where gm is the slope of the ic —vgg curve at the bias point Q.

The small-signal approximation implies keeping the signal amplitude sufficiently small that
operation is restricted to an almost-linear segment of the iC—vBE exponential curve.
Increasing the signal amplitude will result in the collector current having components

nonlinearly related to vbe.

The analysis above suggests that for small signals (vve << VT), the transistor behaves as a
voltage-controlled current source. The input port of this controlled source is between base
and emitter, and the output port is between collector and emitter. The transconductance of the
controlled source is gm, and the output resistance is infinite. The latter ideal property is a
result of our first-order model of transistor operation in which the collector voltage has no

effect on the collector current in the active mode.

RE,-NOTCITW 0PV TyToT, TIOREIFITHBO)  80A-:d0VY  HOI00T
RTHBOD WDIEFT-HDCAD  dNT,  ACIONT DO AN,e®
WO;DONT),  AOTY, VTN YEITRPDTBI), APBAIR. An,e°
BT, B3, RHTO0R RONYBT  Wyedo®asy) SCOIFRORE I3
ROWORATW FETNF I, BRODNTNIE.
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RO DT _BBO AeD, ROTINPR (D) << IE3) €39y, R,O° a@Le3e 23°-
AODN0ZZ TAZ aNRDWIN WIEAIZT DO RAWAIZT. 88 D003
SDROT A3 L FRCEFE LWXA° aNIBY, eNEITE I BRI, &I, T, E°
FPCEFE ROMYDBT a3, Red&T® IWed YRIEW. AOD0Z3 DRI
350 ,,,BT® YO, NI, T3E3),EY° &3V 9IT03 BNT. JOITTW ST
33, T, WVRTO  FEROTE  &0WD ), ®O°  TOOIREWTBOD
RODODWIN YB3, FOMYB®T  23fe3C2TF AYOD RRCB,S), IOTYTH
)20 &3 0T VOO BRODT.

TEH-RUd e Rga Ai3uun Q¥ @8  oau! arar 3 31 &t TR IC-vBE Tdid
Ih U SIa@odB-ad e Haifad 3. Wdbd AISYUN died SIegIdR] d1d gch
nonlinearly vbe TS A W@éﬂ

IR fa=ayor a8 R (vbe << VT) 131, TMeRex Teh Fleedl MR a1q Sid TUH
IATATT 3 G R B, 1 GHa Tar 37 UIe 9 311 UHeR Sveg 3R, ST
3T3eYC UIE HageR 31 Ter v offe. fafd A SwHu I8 Mg, Sfor
3M3cye TR 3 38, e 3Rl uIH ISR TR =T Ufged 3fex
Hied UNRUIH 3Tg ST Heidex ®lecsl Aihd HISHE Heidex dad av URUIe -TgT.

1.22 The Base current and the input resistance at the Base:

To determine the resistance seen by vie, we first evaluate the total base current ig

Thus

.E-E — !E_i_ib

where I is equal to and the signal component i is given by

11e
ﬁ I"T‘ be

Substituting for by gm gives

14
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. _ Em
I = ﬂ"‘he

The small-signal input resistance between base and emitter, looking into the base, is denoted

by rz and is defined as

Uhe

Fe= —
L

Substituting for i

=B

Foa
g."“

Thus 1z is directly dependent on B and is inversely proportional to the bias current Ic.

Substiy tuting for gm and replacing Ic /B by Is gives an alternative expression for rz,

I'; T

Iy

F‘R’

1.23 The Emitter Current and the input Resistance at the Emitter:

The total emitter current iE can be determined from

where Ik is equal to Ic /o and the signal current ie is given by

i I, Iy
or I';T “he

I- — — (I
i be
Vi

€ or

If we denote the small-signal resistance between base and emitter looking into the emitter by

re, it can be defined as

15
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Comparing with gn equation,

o 1
g.ﬂ] gnr

¥ =

€

The relationship between 1z and r

Vpe — f-b?",r = I—e_’re_’
Thus,

V.= (i,/iy)r,
Which yeilds

re = (B+ 1)r,

Fig: 1(d): Illustrating the definition of 1z and r.
1.24 Voltage Gain:

We have established above that the transistor senses the base—emitter signal vye and causes a
proportional current gm vie to flow in the collector lead at a high (ideally infinite) impedance
level. In this way the transistor is acting as a voltage-controlled current source. To obtain an
output voltage signal, we may force this current to flow through a resistor, as is done in Fig.

1(a). Then the total collector voltage vcg will be

€39)), B, 0°  WCA-DeEIT® ATEF 20952 e93), NAIZT aNI), RONYDJT
2ACATD). 00T BINTOITW WAL3 MYO WY 9, 3,3 (e3WJezooN
935303) FTyS3BRE LT, BOBNTO03Z BIZT N0 oy aee3
A DAT 3. B8 D30, €39, 8,0° 2332 DOD0Y3 TJRI,3 DRV IN
TOODE DEIE0RIZT. TBEN LT 3032 AN® 9, JBODHN, Dosy &8
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RJeBWeInY,; BARLT® aDROT BOOAINTOIZ wIVCNFVIBIT, B3I 1 () S,
TR0 3. SOIT e, RONY BT o33 2% JAY YTIST

3T TR TTOAT hell 38 BT TT2Rer I9-TeR R vbe SR onfdr tr 3=
(&m&@ﬂ)impedancemw &W@mﬁmwwmmwe
HRUTY. 3R UHR TR T @leesl FARd IqHH Aid TUH H1H Hd 3T,
3T3HcYc mlecol Ryd U HRUGNITS!, 3T T JAHMIen WioRige® HTedqd Uarg
HRUGR YT U1 Wehdl, S &1 3SR 1 (T) T Pl Sld. T THU [eglIpRT Fleed
vCE BI5d

YcE — I’”E"(" - J‘('J’Q("
= Vee—Uc+i)Rc
= (Vee—1IcRe) —iR¢

— i '
= Ver — icRc

Here the quantity Vck is the dc bias voltage at the collector, and the signal voltage is given by
v, = iR = —g, v, R
= (—8mRIvs.
Thus the voltage gain of this amplifier Av is

AT' —~ flﬁ =5 _ng(‘

Here again we note that because gm is directly proportional to the collector bias current, the
gain will be as stable as the collector bias current is made. Substituting for gm enables us to

express the gain in the form

_ IR
= — lo’?_

1.25 Seperating the signal and DC quantities:

The analysis above indicates that every current and voltage in the amplifier circuit of Fig.1(a)
is composed of two components: a dc component and a signal component. For instance, vgg =
VBE + Vbe, Ic = Ic + ic, and so on. The dc components are determined from the dc circuit

given in Fig. 1(b).
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On the other hand, a representation of the signal operation of the BJT can be obtained by
eliminating the dc sources, as shown below. Observe that since the voltage of an ideal dc
supply does not change, the signal voltage across it will be zero. For this reason we have
replaced Ve and Vgg with short circuits. Had the circuit contained ideal dc current sources,

these would have been replaced by open circuits.

SDT DT _BBO 233) 1 (D) O e30FTONT® ABTREELEN S T8 OA3LOT
@Wjeood®d 203, A3 ¥ DTVRY FETNPOT TRRTW DO APWAIE: LA
RET NI, ANL&® FEIT. PVTITBTTWIT, 2B &I, 2B + 2D, 83 a0, A
+ 803, &3, Tan. dc PETNFIN, BIF 1 (W) ISD, ANDRT BA AT 3,083
AFEDROIMI.

N3ROBVAB, IPR 3EDATIT03, B NRONTPI), IRTITOIE NPT
230D AN e ToOREFTHBOD DY Pses), RBBONWIIC. BSWIE B3R
BPTTOD  3eLe3.2F WM RD LT D0TW, B3 B TR, AN,®
33 2% FRT5NFI T QOT) MDA, 88 FTOTCLT,N o)) I NI,
DY BT, T BT EBRODN WBUIONATK 3. ATR;EEF ST3E B
A3 DRONFI), BVPRODTBT, JYINFI), 3IVB AZR;FELOT

AN SDICINAISHIAVERCH]

I FAITAYT Fig.1 (31) =1 I8 Tfdhe A UdP T 31 Fleedl G Uedh F-ad]
318 3 GId &d PI: T ST gcah AT Th Rigd g, Iaexund, vBE = VBE +
vbe, ST = AT + ST, 0T Aged R, SHE! °cah i 1 (@) T fddear St

Hfdhe oA ¥ ol Srara.

TIES, W GAfAATIHTD, SR A ¥ B oI Rigd e ufaffa
A Tdhd. T 3Mexf St Rasure ®iees dgad ATel TUH ARt &1, Jrasid R
Fleed Y 3R, T HRUMTS! 3T VCC 0T VBE T ST /¢ Widhe dda 3.
R Afhensd 3meel SRft g™ i SRd, TR § Yedl AfhegR dead 1 3.
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Fig 1(e): The amplifier circuit of Fig. 1(a) with the
dc sources (Ve and Vcc) eliminated (short-
circuited). Thus, only the signal components are

present. Note that this is a representation of the

,l i signal operation of the BJT and not an actual

o 1 amplifier circuit.

Note, however, that the circuit of Fig. 1(e) is useful only in so far as it shows the various
signal currents and voltages; it is not an actual amplifier circuit, since the dc bias circuit is not
shown. Figure 6.39 also shows the expressions for the current increments (ic , ip, and ic)
obtained when a small signal vee is applied. These relationships can be represented by a
circuit. Such a circuit should have three terminals—C, B, and E—and should yield the same
terminal currents indicated in Fig. 1(e). The resulting circuit is then equivalent to the
transistor as far as small-signal operation is concerned, and thus it can be considered an

equivalent small-signal circuit model.

SN, WBF 1 (V) OD ATRFET dF ANE® TyeddodNne NI,
w30 2,.FT), 3RLDAITTITNR 003 GVTOAINTINT 0T, NaNDA:
B DT L0R) FONT® AT E €90) , NTOWT BA WOA® AT EY®
€930, 30N . 233 6.39 BT 20T A, AN L& eI €93 AATIN VT3
BA.3 VPETNLA (ic , ib, aNIY, ie) 93N 3CDRIZE. T8 FOWOBPNP I,
RNTREEF  TBAPAWIBIR). O3B/ ATREEF NPT EedEIO.FI,
BRODTLID - A, ), NI, B - D), B3 1 (Y) I, FRBIRE T3¢
eEI®  FTyeoDBNFI), OB, TOToe0N  POENIE BT E"
S033 ®ea,-ROTCS T FTWI ROVORATOI €59y A6 AeDINTII I,
aDI), PN YW, /S RW,-ROTEZ  ITREE  DoTD  DOTD
BONBR20TIT).

YT, A& &1 &1 1. 1 (3) 9 Aidhe haw ATAdd Iugad Mg HRUI o fafdy Rga
TaTg O Fleeot gxifad; SR ydue Afdhe gxifad sma et |uE o yer ade Tfhe
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L. Ml 6.39 ST Uh TeT RIUA vbe AR bl SITd dagT U dcHT da-1aTe (ic , ib,
30T TE Ut Sifcedt qRaad. § Ty U Ffdhe gR gxifad S Xhd. 3= Ifhered
<fH T sremaad - o, &t s S - 3for i 1 (3) 7 axifaeia 9 <fiHd varg 3ad
HRI9d. IRUMH Tfthe TR TeM-Rua TmeA Tdd eiferey T 318, ST S
TBR Tl Ueb el AeT-Rizret Hiche Al A ST b,

1.26 The Hybrid — = model:

An equivalent circuit model for the BJT is shown in Fig. 1(e). This model represents the BJT
as a voltage-controlled current source and explicitly includes the input resistance looking into
the base, rz. The model obviously yields ic = gm vbe and Not so obvious, however, is the fact
that the model also yields the correct expression for ic . This can be shown as follows: At the

emitter node we have

) [Lr [LFS
e = __C +gm7rbe = -_"{ 1+ gmr;T}
Fe Fz
Yhe Fa
= -_— l —+ = /(_ )
rk{ ﬁ:' be 1 + ﬁ
= _"be/re

A slightly different equivalent-circuit model can be obtained by expressing the current of the

controlled source (gm Vbe) in terms of the base current i, as follows:

g.ru:",fje = gnr(ibrﬁ)
= {gnrr:r)ih = ﬂib

This results in the alternative equivalent-circuit model shown in Fig.1(f). Here the transistor

is represented as a current-controlled current source, with the control current being i.
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Fig :Two slightly different versions of the hybrid-t model for the small-signal operation of
the BJT. The equivalent circuit in 1(e) represents the BJT as a voltage-controlled current
source (transconductance amplifier), and that in 1(f) represents the BJT as a current-

controlled current source (a current amplifier).

The two models of above figure are simplified versions of what is known as the hybrid-n
model. This is the most widely used model for the BJT. It is important to note that the small-
signal equivalent circuits of fig 1(f) model the operation of the BJT at a given bias point. This
should be obvious from the fact that the model parameters gm and rr depend on the value of
the dc bias current Ic , as indicated in above figure. It is interesting and useful to note that the

models of Fig. 1(e) and 1(f) are the small-signal versions of BJT.

RADT ANSTE TR RTINS Ty T-D 23000 0T FTTOD,TBII
RNOPLT3 €353, NPoNS. VD WBEIR 93053 D08 TeooN WFRSIME
D OIING. 90RTE 1 (F%) 2RO RED,-ROTCI RaoS ATR;EED
- WO ADEFB, JF@3  WORII), WBEIOD T BTBONN,
NEDAIYT) N5, VR WD ACNIT0TNAYI), MO NI, rp 03
BITS), ARBATE03, dc BF3 JAL,3 IC 325330, €9e30WATII R
DOT R, By BT, 23F) 1 (V) DI, 1 () S 300R0NSH DXE30D =ea, -
ROTE3 83,3 NPoNS NOTD NIRRT SAFLODT 03I,
VTOINT N3,

A AHT aH Aled AHd-Ut Aled WUH SidEd Sd B FIUr g TR,
YISTUTS! § Haid oRd dToRd SR A d 3116, § A&Td 90 HgdTd 318 $i 3ok 1
(TH) T TeH-RIUd T Aidey faden qaus fagar BIT &1 TR Alsd
FRA. § Alod AIUSS TH ST 3RO ot 3rapelt Aed gxifaeamymm St ydue adue
3T, el (A SRId I URJT WY Ulfgel. § FARSID 0T IUY 318 i b1, 1
(3) AT 1 (UH) =1 ATST BIT T A8H-RIUd 3MTaRit M.

1.27 The T — Model:

Although the hybrid-m model can be used to carry out small-signal analysis of any transistor

circuit, there are situations in which an alternative model, shown in Fig. 1(g), is much more
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convenient. This model, called the T model, is shown in two versions below. The model of
Fig. 1.g(a) represents the BJT as a voltage-controlled current source with the control voltage
being vbe. Here, however, the resistance between base and emitter, looking into the emitter,
is explicitly shown. From Fig. 1.g(a) we see clearly that the model yields the correct

expressions for ic and i.. For i, we note that at the base node we have

B TF-d  eBOONT),  O0R)TE €YD, RO°  ATR;EE,  RE,-ROTLI
DB DBBONT),  FNRRALELD WYRAWDIORTR, BIRe). 300330
BOEOD 23O B3NP3, 1 (B), B, BINTROTT. &3 8D
NOT TN, B B8 TRTWOONTY, TP DT €333, N¥S). 3,¢0RINT.
B33 1.g () DO WEEIANN, a3@Le3 2F-AON0F3 &Wjedo® RN
TBARAZT. YD), e3NW;, WA NI, BRTIARIITOD ST
&) 3B, BRTARRRIITONR, ST, A,@e0N SRCDASING. HNRT®
QOT. 1.g(a) T iC aD3IY, ie MON FDOITW 9P WsBNT ), DCBIZ T DOTD
V0 A P@0N SRCTIBE_33. ib MON Dol BRODTE A SRCTE,E). Do)
AN ENYC (G

TdHd-dt Aisd HIUATR! TaRex Hidhe deM-Hdhd Ayl SFHEATd SHTUT0! aiiRd S,
Ydhd a1, 3= IR 3med SaTd Ush vafdt Aigq, e Aed axifaa ong. 1 (o), SRa
TR 3MTg. § Aled, < AT RUIAId, WTell G g 9 R 318, 3ok Hied.
1.g (U) FOA0 FIeest vbe Td T Rlecol-HARd aad= Aid WUH BIT Uiaffra
B, U, A, YR 3T emitter ST UFTBR, emitter T UIGO, WYY Gifd
318, 3SR UREH. 1.g (31) 3T WYL UTgd! Bt Alsd et am Sifiyoradt Iam
DR SO TGOS, ib HIST ST A& ST Bt 9 AISHS HUADS 39
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Figure 1(g): Two slightly different versions of what is known as the T model of the BJT. The
circuit in 1(g)(a) is a voltage-controlled current source representation and that in 1(g)(b) is a
current-controlled current source representation. These models explicitly show the emitter

resistance re rather than the base resistance rr featured in the hybrid-rm model.

Uhe Uhe

't-b = -"_(_-, —Emlpe — . {l _g.m'rc)
= E'ﬁ’(l —a) = ﬂ’(l __i)
e Fe S+ 1
_ __he _ ke
(B+ 1)y, r.

If in the model of Fig. 1(g)(a) the current of the controlled source is expressed in terms of the

emitter current as

Emlpe = gm( J‘e"ﬂc)
== {g”?re}jc = aﬁf’

we obtain the alternative T model shown in Fig. 1(g)(b). Here the BJT is represented as a

current-controlled current source but with the control signal being ie.

MOSFETs: Biasing in MOS amplifier circuits: Fixing VGS, Fixing VG, Drain to Gate
feedback resistor. Small signal operation and modeling: The DC bias point, signal current in
drain, voltage gain, small signal equivalent circuit models, transconductance, The T

equivalent circuit model.
1.3 Biasing in MOS Amplifier Circuits:

An essential step in the design of a MOSFET amplifier circuit is the establishment of an
appropriate dc operating point for the transistor. This is the step known as biasing or bias
design. An appropriate dc operating point or bias point is characterized by a stable and
predictable dc drain current Ip and by a dc drain-to-source voltage Vps that ensures operation

in the saturation region for all expected input-signal levels.

NOWRFT NP YE  S0DBONT® ATWREE), DVARE).  WwOTWY 935Ny
203RF0W3 LY, J/ N6 APRTOE A STJTLEION®  HoAN0E® €930,

ROADAIITD. VL) VT3 WFR0 BVFOOF )NzA D0 T, B
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BOZNT. BT, B e3TBLEIONT TIAIOEY 9T BFWOI ORI, A0
203D, NIRRTV BA By o TCOEY 808 03I, B Ty -E0-RRCAE
AL 2F BRNA,0T ATRIAUING, BT DO, AOCFI B, %A,
RDENPR T2 BB FSeSTE). FToOOEFTHBONRY, Y NALAIT.

THINTHUmse! a4 Alhedd [SHEAHE TH IGH UISd UM CT-2Re3! Iy
SRf SRfET uiget RIUAT. § Urehet UeraTe fobar verndt fEgme U sfiwwd o,
3107 ST -¢- I Fleeo Ble Iy gR axifdd Sd o d 3fUférd 37ye- Rz wRiard)
HyadT USRI SR gFAfEd #a.

1.31 Biasing by Fixing Vgcs:

The most straightforward approach to biasing a MOSFET is to fix its gate-to-source voltage
Vs to the value required to provide the desired Ip. This voltage value can be derived from
the power-supply voltage Vpp through the use of an appropriate voltage divider.
Alternatively, it can be derived from another suitable reference voltage that might be
available in the system. Independent of how the voltage VGS may be generated, this is not a

good approach to biasing a MOSFET. To understand the reason for this statement, recall that

20DAT ID AN, WHBNAD) SINIe0TW aN°DsT, ST 1IEF-E0-AtA*E
L322 AVRAR® 9T, ROTERITIHTI) 00T Mosfet 9D, TFWOI a3
93053 TE LdPOSING. B8 &332 eI, AT, a3 22
IRBTE WFTO aDROT )T5T° @RT,;T a3 23 o). 8. & TBTBONWIBITN.
RBOHECNIN, YT, AR, ©235eITVe eNILR0TY APRTT eVe3e_
a3ee3,23,008 BTBODWIBIT. a3 2T IRRA® €I, BEN GVT, PR WIBIT)
ROWITT Wi, A 803N, BT WORD D0WAF NP YEONI, JFH3
SOWD) PIED LdPITRC),. B TBCPTODN TR, I 0B TR YL,
T, SSDATRD,

Ud% MOSFET U&UTd ¥ald TR ePD A Sfasd TSI UGH HRUANIS! HaRId Hed
AT Ne-¢-Hd Fleed VGS FRIHIUT HRUGMTET 3HTg. § Dleed i Y gleest

fqUTSIe TR AT d1S RAST @lees VDD IR WK ol 113, Yehd. Tafg™,
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JUe T8 IUAs 3R Thd DI gudl A gy Fliees IR U dhdl SIS XMahl.
Flees GGy HY TR el §1S; Webd ATYRIA a3, 8 U MOSFET U&UTcl HRugral
TAITAT BB ATel. T AT HRUT THS YU, o A&Td &al

1 . W
In = -, C..—
D 2##: ox

7 Vas— Vo)’

and note that the values of the threshold voltage V. , the oxide-capacitance Cox , and (to a
lesser extent) the transistor aspect ratio vary widely among devices of supposedly the same
size and type. This is certainly the case for discrete devices, in which large spreads in the
values of these parameters occur among devices of the same manufacturer’s part number. The
spread is also large in integrated circuits, especially among devices fabricated on different
wafers and certainly between different batches of wafers. Furthermore, both Vt and p, depend
on temperature, with the result that if we fix the value of Vgs, the drain current Ip becomes

very much temperature dependent.

To emphasize the point that biasing by fixing Vgs is not a good technique, we show in Fig.
1(h) two ip—vgs characteristic curves representing extreme values in a batch of MOSFETs of
the same type. Observe that for the fixed value of Vgs, the resultant spread in the values of

the drain current can be substantial.

in A Fig:1(h): The use of fixed bias

(constant Vgs) can result in a

Device 2

large variability in the value of
Device 1
Ip. Devices 1 and 2 represent
extremes among units of the

same type.

1.32 Biasing By fixing V¢ and connecting a Resistance in the source:

An excellent biasing technique for discrete MOSFET circuits consists of fixing the dc voltage
at the gate, Vg, and connecting a resistance in the source lead, as shown in Fig. 1(i). For this

circuit we can write
Vg = Vas+ Rodp
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Now, if Vg is much greater than Vgs , Ip will be mostly determined by the values of Vg and
R=S. However, even if Vg is not much larger than Vgs, resistor Rs provides negative
feedback, which acts to stabilize the value of the bias current Ip. To see how this comes
about, consider what happens when Ip increases for whatever reason. Equation above
indicates that since Vg is constant, Vgs will have to decrease. This in turn results in a

decrease in Ip, a change that is

| In A

Device 2

Device 1

Ipa
2 e ——— Slope = —1/Rs
Dl
0 Vass Vs Ve Vos
(b)
V—DD
Voo
Vop
Ry
R Ry 'L I
4' ¥y RU[ RD
] [ 5
— R l /,
A = I 1 Ry ‘#
; |il; || !
Y R
Ry Tsig R Ry
b = = — —Vss
(c) (d) (e)

Fig 1(i):Biasing using a fixed voltage at the gate, VG, and a resistance in the source lead, RS:
(a) basic arrangement; (b) reduced variability in ID; (c) practical implementation using a
single supply; (d) coupling of a signal source to the gate using a capacitor CC1; (e) practical

implementation using two supplies.
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opposite to that initially assumed. Thus the action of RS works to keep ID as constant as
possible. This negative feedback action of RS gives it the name degeneration resistance, a

name that we will appreciate much better at a later point in this text.

Figure (b) provides a graphical illustration of the effectiveness of this biasing scheme. Here
too we show the ip—vgs characteristics for two devices that represent the extremes of a batch
of MOSFETs. Superimposed on the device characteristics is a straight line that represents the
constraint imposed by the bias circuit. The intersection of this straight line with the ip—vgs
characteristic curve provides the coordinates (Ip and Vgs) of the bias point. Observe that
compared to the case of fixed Vgs, here the variability obtained in Ip is much smaller. Also,
note that the variability decreases as Vg and Rs are made larger (thus providing a bias line

that is less steep).

Two possible practical discrete implementations of this bias scheme are shown in Fig. (c) and
(e). The circuit in Fig. (c) utilizes one power-supply Vpp and derives Vg through a voltage
divider (Rg1, Ri2). Since Ig = 0, Rg1 and Ra2 can be selected to be very large (in the megohm
range), allowing the MOSFET to present a large input resistance to a signal source that may
be connected to the gate through a coupling capacitor, as shown in Fig.(d). Here capacitor
Cc1 blocks dc and thus allows us to couple the signal vsig to the amplifier input without
disturbing the MOSFET dc bias point. The value of CC1 should be selected large enough to
approximate a short circuit at all signal frequencies of interest. We shall study capacitively
coupled MOSFET amplifiers, which are suitable only in discrete circuit design. Finally, note
that in the circuit of Fig.(c), resistor Rp is selected to be as large as possible to obtain high
gain but small enough to allow for the desired signal swing at the drain while keeping the

MOSFET in saturation at all times.

When two power supplies are available, as is often the case, the somewhat simpler bias
arrangement of Fig.(e) can be utilized. This circuit is an implementation of above equation,
with Vg replaced by Vss. Resistor Rg establishes a dc ground at the gate and presents a high
input resistance to a signal source that may be connected to the gate through a coupling

capacitor.
1.33 Biasing Using Drain to Gate Feedback Resistor:

A simple and effective discrete-circuit biasing arrangement utilizing a feedback resistor

connected between the drain and the gate is shown in Fig. 1(j). Here the large feedback
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resistance Rg (usually in the megohm range) forces the dc voltage at the gate to be equal to

that at the drain (because I = 0). Thus we can write

Vags = Vps = Vpp— Rpip

which can be rewritten in the form

Vop = Vas+ Rplp

If Ip for some reason changes, say increases, then above equation indicates that Vgs must
decrease. The decrease in Vgs in turn causes a decrease in Ip , a change that is opposite in
direction to the one originally assumed. Thus the negative feedback or degeneration provided
by R works to keep the value of Ip as constant as possible. The circuit of Fig. 1(k) can be
utilized as an amplifier by applying the input voltage signal to the gate via a coupling
capacitor so as not to disturb the dc bias conditions already established. The amplified output

signal at the drain can be coupled to another part of the circuit, again via a capacitor.

Voo

Rp
_ Fig:1(j): Biasing the MOSFET using a large drain-to-gate
== AMA—¢—O feedback resistance, Rg

Small signal operation and modelling: The DC bias point,

signal current in drain, voltage gain, small signal equivalent

circuit models, transconductance, The T equivalent circuit

model.
1.4 Small Signal Operation and Models:

In our study of the operation of the MOSFET amplifier we learned that linear amplification
can be obtained by biasing the MOSFET to operate in the saturation region and by keeping

the input signal small. In this section, we explore the small-signal operation in some detail.

For this purpose we utilize the conceptual amplifier circuit shown in Fig.1(k). Here the MOS
transistor is biased by applying a dc voltage Vs, and the input signal to be amplified, vgs, is
superimposed on the dc bias voltage Vgs. The output voltage is taken at the drain.

RRCR LT 30D TONTE  TOOIREWTWAD o),  WPsONITA),  Doa)
AR BT* BB T), TOORE DTSELRD) 3CR T €930, BFD0I 2300083
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1.41 The DC Bias point:

The dc bias current ID can be found by setting the signal vgs to zero; thus,

- PR 1 2
In=Sk,(Vgs —V,) = Ekn Vor

1
2
Voo where we have neglected channel-length modulation

(i.e., we have assumed A = 0). Here Vov = Vgs — Vi is
l 2 Ro the overdrive voltage at which the MOSFET is biased to

operate. The dc voltage at the drain Vps will be

Vps = Vpp—Rplp

Vs Fig 1(k): Conceptual circuit utilized to study the
. operation of the MOSFET as a small-signal amplifier.

To ensure saturation-region operation, we must have
Vpos = Vor
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Furthermore, since the total voltage at the drain will have a signal component superimposed

on Vps, Vps has to be sufficiently greater than (Vov) to allow for the required signal swing.
1.42 The signal current in the Drain terminal:

Next, consider the situation with the input signal vgs applied. The total instantaneous gate-

to7 source voltage will be

Ugs = Vast Vg
resulting in a total instantaneous drain current ip,

. 1 . FN2

Ip = Ekﬂ(l'(f.ﬁ_i_wgsi ;!)
1, (¥, Y+ k, (V o, + L
_2 n G5 r n S T [ - o 1

g5

The first term on the above equation can be recognized as the dc bias current Ip. The second
term represents a current component that is directly proportional to the input signal vgs. The
third term is a current component that is proportional to the square of the input signal. This
last component is undesirable because it represents nonlinear distortion. To reduce the

nonlinear distortion introduced by the MOSFET, the input signal should be kept small so that

1 2
Ekni'g_\.

= k” (Vas — V—r):"gs
Resulting in

i»'g.'i <‘§ 2( Ir’(}.ﬁ' = V:}
Or equivalently

I'Ig.'t <€ 2 I"(;J'

If this small-signal condition is satisfied, we may neglect the last term in Equation of ip and

express ip as
ipn =Ip+iy,
Where
iz=k,(Vgs— Vf)""g_s-
Or in terms of overdrive voltage Vov
8m = k.Vor
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The parameter that relates 1g and vgs is the MOSFET transconductance g,

I

gm = — = kaz( J’”GS_ Lr:}

Ve

Or

Em =k, Voy
Figure below presents a graphical interpretation of the small-signal operation of the MOSFET
amplifier. Note that gm is equal to the slope of the ip — vgs characteristic at the bias point,

di
g}" = (;' =

FiLF e . — I
GS|vge=Vgs

ink

An almost
linear segment

Slope = g,

Fig:1(1): Small-signal operation of the MOSFET amplifier.
1.43 The Voltage Gain:

we can express the total instantaneous drain voltage vps as follows:

vps = Voo — Rpip
Under the small-signal condition, we have
vpy = Vpp—Rp(dp+iy)
Which can be rewritten as
vps = Vps— Rpiy
Thus the signal component of the drain voltage is
vy = —daRp = —8nv Rp

Which indicates that the voltage gain is given by

de,..
AI' = — _ngL"J

Ueas
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The minus sign in above equation indicates that the output signal vgs is 180° out of phase with
respect to the input signal vgs. The input signal is assumed to have a triangular waveform with
an amplitude much smaller than 2(Vgs — Vi ), the small-signal condition ensure linear
operation. For operation in the saturation region at all times, the minimum value of vps
should not fall below the corressponding value of vgs by more than V. Also, the maximum
value of vps should be smaller than Vpp; otherwise the FET will enter the cutoff region and

the peaks of the output signal waveform will be clipped off.

BRI BeDETTOTE). RBYSA® Ago® B EF AN,e® 08, A0WORATO3I
79630,,65° AN 5 180deg Z2¢€3° BOITW DO ARWBAIZES. B3 L AN ¢ €93, 2
(DB - JE3 ) NO3 2BT,00EW TP RODN JTRLS 3TONTRTI),
BRODTI DOT RIR DN, REa,-AN & RT3, 3O
FTOOREWTHBONNY, NVWITRBAIZE. N, ADONTWOR, ASRTS®
RRCBTAS ToOIREWTHBMON, DRNR, TO®, 0°0D5e) VDA, TSRO
29,0807 e372e)58,03 JE3N03 B, TP WCFIRTTN. 9O R, DDA, NMO®,,
PO  DBRRNY, 03 BT,LoNTND - BONBI Al TEFeSH®
TS, FasdRIZE D3I, BEJEF° AN, 3TON CRBT dDTNFIN, 3.57°
PADIEISOIANN AN

R JHHIU T ol g 399 RiUd ves deufd Iare Rud vds Toamd R
180deg 31T 31 JfeId HRd . 9Yc e 2 (G - FIch) UeT Gud a8 Mg
HATUe 3ifieh I Wefl IS, 4. T8, RIS WK S Hed BISISU&T e
3RTd; 3T Thge! HeHth USRI Ya=T Hd 30T 3T3eye RErd aex Bhidd! fRrRaw
BT ST,

Seperating DC Analysis and Signal Analysis:

From the preceding analysis, we see that under the small-signal approximation, signal
quantities are superimposed on dc quantities. For instance, the total drain current ip equals the
dc current Ip plus the signal current iq , the total drain voltage vps = Vps + vas, and so on. It

follows that the analysis and design can be greatly simplified by separating dc or bias
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calculations from small-signal calculations. That is, once a stable dc operating point has been
established and all dc quantities calculated, we may then perform signal analysis ignoring dc

quantities.

H0DT AT _BBOOT, RED,-ROTCI 90T RN, B Tjaootony
003 AN, &WjeeeaNnF), ARTVBEORPA® BRI T DOTW) Vo))
SLTBI3C 3. GVTRBTTN, €3, By j0° TTOET 220G B3R TTOEF 808 B3N
AT, TTOES® 8080, 20E3), T8y y° o332 LdBBRR® a0, LB’ + o), aNI,
. R9,-ROTCF S3ToLF0NPOT BA B0 IFwe3 3T0,300NPI,
WRBERAIT DD ROT AT BB aDI), dVogRINY, LB FeoeN
AVFRRPIWTIR) N0 ONROAIZT. ©0ow3, AT A  esxvBeé3ont
FOON0EY I, AYAAT S03T DI, DV, BA TjeVNFI, ST, B3T3
S033, BA  TIeNFI), OOFFA Do) AN T _BHBONT,
20T LTITI).

s Jk

Ups A

Upsmin = UGsmax — ¥

0
Fig.1(m): Total instantaneous voltages vgs and vps
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1.44 Small Signal Equivalent Circuit Models:

From a signal point of view, the FET behaves as a voltage-controlled current source. It
accepts a signal vgs between gate and source and provides a current gm Vg at the drain
terminal. The input resistance of this controlled source is very high—ideally, infinite. The
output resistance—that is, the resistance looking into the drain—also is high, and we have
assumed it to be infinite thus far. Putting all of this together, we arrive at the circuit in Fig.
1(n), which represents the small-signal operation of the MOSFET and is thus a small-signal
model or a small-signal equivalent circuit. In the analysis of a MOSFET amplifier circuit, the
transistor can be replaced by the equivalent circuit model shown in Fig. 1.n(a). The rest of the
circuit remains unchanged except that ideal constant dc voltage sources are replaced by short
circuits. This is a result of the fact that the voltage across an ideal constant dc voltage source
does not change, and thus there will always be a zero voltage signal across a constant dc
voltage source. A dual statement applies for constant dc current sources; namely, the signal
current of an ideal constant dc current source will always be zero, and thus an ideal constant
dc current source can be replaced by an open circuit in the small-signal equivalent circuit of

the amplifier.

AN, T3y BRSO, F*YE] eFate3 2 QON0Y3 FRL3 DROIN
BIEAZ . YT 11 aNI), SDDPOT I AN DBNRPI, ALTORIII
DB, By 0 EeNETOLD). TAN.3 MO VMY, WBNAIZT. &8 DOH0Y3
SNROT YB),EF° &3)3TualEed) 300230 TBR),,-e3T3TE 00N, 903N, output
3T (resistance)-e90TWT, By ® (drain)S). SRR &S8TREG
(resistance)ayd) BLFO,NI T, eNI), Ve LI, VONITR 9IT03 DO
RDAT . QRSP WML, o) BT | () ), ITREES,
3RS 33, VY MOSfet &S RED,-ROTCS TOOE IFTHBONI), BB IPAIS T
2NI), BWOOTN R, -AOTCS 23000 G0 ALY, -ROTLI A0S AT
e3NT. DOWRRRT*GES 30X FONT® ATR;FEY, B _BBORND)., €39, R, 0°
O3, BF ln (D) ), 3RDATIE AP ATAFEE  PBDAOT
WBONROTIR. BSWIe AT BA PRS2 DRONPID, Jode
RTR;EEPOT WBANFMIZE 0WIT), BRTIITBEA NPT R ET
WBOINT SOPABNIE. ST3E 2.0 BA Jate3 2 eDROTITWOs3 a3@ee3 2%
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Fig:1(n): Small-signal models for the MOSFET: (a) neglecting the dependence of ip on vps in
saturation (the channel-length modulation effect); and (b) including the effect of channel-

length modulation, modelled by output resistance.

The circuit resulting can then be used to perform any required signal analysis, such as

calculating voltage gain.

The most serious shortcoming of the small-signal model of Fig. 1(n)(a) is that it assumes the
drain current in saturation to be independent of the drain voltage. From our study of the
MOSFET characteristics in saturation, we know that the drain current does in fact depend on
vps in a linear manner. Such dependence was modelled by a finite resistance ro between drain

and source, whose value is given by

_ 17l
r, = ——

ip

where is a MOSFET parameter that either is specified or can be measured. It should be
recalled that for a given process technology, Va is proportional to the MOSFET channel
length. The current Ip is the value of the dc drain current without the channel-length

modulation taken into account; that is
I, =<k, V2,
D 2 n® Ol

Typically, ro is in the range of 10 kQ to 1000 kQ. It follows that the accuracy of the small
signal model can be improved by including ro in parallel with the controlled source, as shown
in Fig.1(n)(b). It is important to note that the small-signal model parameters gm and ro

depend on the dc bias point of the MOSFET.

we find that replacing the MOSFET with the small-signal model of Fig. 1(n)(b) results in the

voltage-gain expression

A, = = = —g.(Rp|lr,)

Ues

Thus, the finite output resistance ro results in a reduction in the magnitude of the voltage

gain.
1.45 The Transconductance gm:

MOSFET transconductance equation described earlier can be rewritten with k, = kn’ (W /L)

as follows:
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&n =k (W/LY(Vgs— V) =k (W/L)Voy

This relationship indicates that gm is proportional to the process transconductance parameter
ko = mnCox and to the W/L ratio of the MOS transistor; hence to obtain relatively large
transconductance the device must be short and wide. We also observe that for a given device
the transconductance is proportional to the overdrive voltage, Vov = Vgs - V¢, the amount by
which the bias voltage Vgs exceeds the threshold voltage Vi . Note, however, that increasing
gm by biasing the device at a larger Vgs has the disadvantage of reducing the allowable

voltage signal swing at the drain.

Another useful expression for gm can be obtained by substituting for Vov as \ [2Ip /

kn’(W/L)]
&m = [2k; SW/L JI,,
This expression shows two things:
1. For a given MOSFET, gn is proportional to the square root of the dc bias current.
2. At a given bias current, g, is proportional to V[W / L]

Yet another useful expression for gm of the MOSFET can be obtained by substituting for
kn’(W /L) by 2Ip / (Vs — Vi)?

iy

Iy
Sl
jans Ip

—
=&m T Vo
2 o

0

o) e Ve 1 -
5 Vewr o o

Fig:1(n): The slope of the tangent at the bias point Q intersects the vov axis at (1 /2 )Vov.

Thus, gn=Ip/(1/2 Vov)
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1.46 The T Equivalent Circuit model:

Through a simple circuit transformation, it is possible to develop an alternative equivalent-

circuit model for the MOSFET. The development of such a model, known as the T model.

Figure 1(0):(a) shows the equivalent circuit studied above without ro. Fig. 1(0)(b) we have
added a second gm Vs current source in series with the original controlled source. This

addition obviously does not change the terminal currents and is thus allowed.

The newly created circuit node, labeled X, is joined to the gate terminal G in Fig. 1(0)(c).
Observe that the gate current does not change—that is, it remains equal to zero—and thus this
connection does not alter the terminal characteristics. We now note that we have a controlled
current source gm Vgs connected across its control voltage vgs. We can replace this controlled
source by a resistance as long as this resistance draws an equal current as the source. Thus

the value of resistance iS Vs / gm Vgs =1/ gm.

This replacement is shown in Fig. 1(0)(d), which depicts the alternative model. Observe that

1g 1s still zero, i = gm Vgs and is = Vgs / (1 / gm) = gm Vgs Which is same as shown in fig (a).

The model of Fig. 1(0)(d) shows that the resistance between gate and source looking into the
source is This observation and the T model prove useful in many applications. Note that the

resistance between gate and source, looking into the gate, is infinite.

In developing the T model we did not include ro. If desired, this can be done by incorporating
in the circuit of Fig. 1(o)(d) a resistance ro between drain and source, as shown in Fig.
1(p)(a). An alternative representation of the T model, in which the voltage-controlled current

source is replaced with a current-controlled current source, is shown in Fig. 1(p)(b).
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+ i
Ugs — Ugs
o O
(a) (b)
=0 EmUgs
G o 2 o }‘( —— oD
EmUgs vt \/ ;
~ Ugy EmUgs

Fig:1(0): Development of the T equivalent-circuit model for the MOSFET. For simplicity, ro

has been omitted; however, it may be added between D and S in the T model of (d).

Fig:1(p):(a) The T model of the MOSFET augmented with the drain-to-source resistance ro.

(b) An alternative representation of the T model.
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MOSFET Amplifier configuration: Basic configurations, characterizing amplifiers, CS

amplifier with and without source resistance RS, Source follower.

MOSFET internal capacitances and High frequency model: The gate capacitive effect,

Junction capacitances, High frequency model.

Frequency response of the CS amplifier: The three frequency bands, high frequency

response, Low frequency response.

Basic MOSFET Amplifier configurations: The three Basic Configurations:

There are three basic configurations for connecting the MOSFET as an amplifier. Each of
these configurations is obtained by connecting one of the three MOSFET terminals to ground,
thus creating a two-port network with the grounded terminal being common to the input and

output ports.

Figure 2.0 shows the resulting three configurations with the biasing arrangements omitted. In
the circuit of Fig. 2(a) the source terminal is connected to ground, the input voltage signal is
applied between the gate and ground, and the output voltage signal is taken between the drain
and ground, across the resistance . This configuration, therefore, is called the grounded-
source or common-source (CS) amplifier. The common-gate (CG) or grounded-gate amplifier
is shown in Fig. 2(b). It is obtained by connecting the gate to ground, applying the input
between the source and ground, and taking the output across the resistance connected

between the drain and ground.

Finally, Fig.2(c) shows the common-drain (CD) or grounded-drain amplifier. It is obtained by
connecting the drain terminal to ground, applying the input voltage signal between gate and
ground, and taking the output voltage signal between the source and ground, across a load
resistance. For reasons that will become apparent shortly, this configuration is more

commonly called the source follower.

| ; 'R."J

P

Fig:2(a):Common source(CS) Fig:2(b): Common Gate (CG)
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Ry

Fig: 2(c): Common Drain (CD)
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2.12 Characterizing Amplifiers:

Figure 2.1(a) shows an amplifier fed with a signal source having an open-circuit voltage Vg
and an internal resistance Rsig . These can be the parameters of an actual signal source or, in a
cascade amplifier, the Thévenin equivalent of the output circuit of another amplifier stage
preceding the one under study. The amplifier is shown with a load resistance Rr connected to
the output terminal. Here, can be an actual load resistance or the input resistance of a

succeeding amplifier stage in a cascade amplifier.

B3 2.1 (D) WwRB-ATREE J@CE3 2T AT DI, 8030TF T)3TCE Rsig
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Fig: 2.1: Characterization of the amplifier as a functional block: (a) An amplifier fed with a
voltage signal vsig having a source resistance Rsig, and feeding a load resistance Rpr; (b)
Equivalent-circuit representation of the circuit in (a); (c) Determining the amplifier output

resistance Ro.

Figure 2.1(b) shows the amplifier circuit with the amplifier block replaced by its equivalent-
circuit model. The input resistance represents the loading effect of the amplifier input on the

signal source. It is found from

~|

43



MODULE - 2

and together with the resistance forms a voltage divider that reduces to the value that appears

at the amplifier input,

All the amplifier circuits studied in this section are unilateral. That is, they do not contain

internal feedback, and thus will be independent of .

The second parameter in characterizing amplifier performance is the open-circuit voltage

gain , defined as Avo , defined as

The third and final parameter is the output resistance . Observe from Fig. 2.1(b) that is the
resistance seen looking back into the amplifier output terminal with set to zero. Thus can be

determined, at least conceptually, as indicated in Fig. 2.1(c) with

The controlled source Avo Vi and the output resistance Ro represent the Thévenin equivalent

of the amplifier output circuit, and the output voltage Vo can be found from

- — Ry A 1
Yo = Rp+ R, v
All the amplifier circuits studied in this section are unilateral. That is, they do not contain

internal feedback, and thus Ri, will be independent of Ry.

The second parameter in characterizing amplifier performance is the open-circuit voltage

gain Avo, defined as

A, 51

10 ,
ip _
Ry=e=

The third and final parameter is the output resistance Ro . Observe from Fig. 2.1(b) that is the
resistance seen looking back into the amplifier output terminal with V; set to zero. Thus Ro

can be determined, at least conceptually, as indicated in Fig. 2.1(c) with
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The controlled source Avo Vi and the output resistance Ro represent the Thévenin equivalent
of the amplifier output circuit, and the output voltage can be found from

°~ R,+R,

v A:'OI'IJ'

Thus the voltage gain of the amplifier proper, Av , can be found as

4, =22 = 4 Ry
- -TT.' v RL + Ro
and the overall voltage gain Gy,
G, = =2
EIsi‘g
On substituting we get,
R'm R.L
GTI N Rin + Rsig ff‘llaR.L + Ra

2.13 The Common Source (CS) Amplifier:

Of the three basic MOS amplifier configurations, the common source is the most widely
used. Typically, in an amplifier formed by cascading a number of stages, the bulk of the

voltage gain is obtained by using one or more common-source stages in the cascade.

Fig:2.2 (a) Common-source amplifier fed with a signal vsig from a generator with a
resistance Rsig. The bias circuit is omitted. (b) The common-source amplifier with the

MOSFET replaced with its hybrid- model

Figure 2.2(a) shows a common-source amplifier (with the biasing arrangement omitted) fed
with a signal source Vsiz having a source resistance Rsig. We wish to analyze this circuit to
determine Rin, Avo, Ro, and Gv . For this purpose we shall assume that Rp is part of the
amplifier; thus if a load resistance is connected to the amplifier output, it appears in parallel

with .
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For this purpose we shall assume that is part of the amplifier; thus if a load resistance Ry is

connected to the amplifier output, it appears in parallel with Rp.
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53R, 00, WENRIBINT) 2,080 AN ZNROTVLRODN HETE® DBV
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VT FTo,N J0zd) RD €303 s3ONTE 4I0Ned0 NG QOT) 29003 &3 , 33,008
2000 BT &Wy3VREFER), S0 FONT® 330, E3, ROJFEATT, 9T
23090003 T200N TBRABRY,IE.
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I0 e Ush Iid UideR Rsig Td. 3! RA, Avo, RO, 0T Sitat fRufia Hruamarat ar
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1 HRUMATS! TN 3 IO ¢RE B BT HIT A0; 3MRM YHR SR T 018 UADHR
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Characteristic Parameters of the CS Amplifier:

Replacing the MOSFET with its hybrid n- model, we obtain the CS amplifier equivalent
circuit shown in Fig 2.2(b). We shall use this equivalent circuit to determine the characteristic
parameters Rin, Avo, and Ro as follows.
The input resistance Rin is obviously infinite,

R = &=

in

The output voltage is found by multiplying the current (gm Vgs) by the total resistance

between the output node and ground,
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v, = —(8,v ) (Rp |l r,)

Since Vg = Vi, the open circuit voltage gain Avo = V, / Vj can be obtained as,

‘4:1:3 = _gm(RD |I ‘P‘o)
Observe that the transistor output resistance ro reduces the magnitude of the voltage gain. In
discrete-circuit amplifiers, which are of interest to us in this chapter, Rp is usually much

lower than ro and the effect of on reducing ro on reducing |Avo| is slight (less than 10% or

s0). Thus in many cases we can neglect ro and express Avo simply as
-”47-,5 — ("gnrRQ)
Neglecting is allowed only in discrete-circuit design.

The output resistance Ro is the resistance seen looking back into the output terminal with Vi
set to zero. From Fig. 2.2(b) we see that withV; set to zero,Vg will be zero, and thus gm Vs

will be zero, resulting in
R,= Rpllr,
Here, 1o has the beneficial effect of reducing the value of Ro. In discrete circuits, however,
this effect is slight and we can make the approximation
R, = R,

This concludes the analysis of the CS amplifier proper. We can now make the following

observations. 1. The input resistance is ideally infinite.

2. The output resistance is moderate to high (in the kilohms to tens of kilohms range).
Reducing Rp to lower Ro is not a viable proposition, since the voltage gain is also reduced.
Alternatively, if a low output resistance (in the ohms to tens of ohms range) is needed, a

source follower stage is called for, as will be discussed in next.

3. The open-circuit voltage gain Avo can be high, making the CS configuration the
workhorse in MOS amplifier design. Unfortunately, however, the bandwidth of the CS

amplifier is severely limited.

VR ARA® 30 FODT®* ADCTW AT _H[W a30TONMI . Doey) 8N
FTPNS ©93BURETINT ), e300T3203ITN.
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Overall Voltage Gain:

To determine the overall voltage gain Gy, we first note that the infinite input resistance will

make the entire signal Vg appear at the amplifier input,

an obviously ideal situation. At this point we should remind the reader that to maintain a
reasonably linear operation Vi, and hence Vg should be kept much smaller than 2Voy. If a
load resistance Ry is connected to the output terminal of the amplifier, this resistance will
appear in parallel with Rp. It follows that the voltage gain Av can simply replacing Rp in the

expression for Avo by Rp || Rr.
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A-.. = _gm(RD " RL || "voj
This expression together with the fact that Vi = Vg, provides the overall voltage gain,

GT' = ‘4:l = _gm(RD Il RL || ro)

2.13 The Common Source Amplifier with Source Resistance:

It is often beneficial to insert a resistance Rs in the source lead of the common-source
amplifier as shown in Fig. 2.3(a). The corresponding small I-signal equivalent circuit is
shown in Fig. 2.3(b), where we note that the MOSFET has been replaced with its T

equivalent-circuit model.

The T model is used in preference to the model because it makes the analysis in this case
somewhat simpler. In general, whenever a resistance is connected in the source lead, the T
model is preferred. The source resistance then simply appears in series with the resistance

1/gm and can be added to it.

It should be noted that we have not included ro in the equivalent-circuit model. Including ro
would complicate the analysis considerably; ro would connect the output node of the

amplifier to the input side and thus would make the amplifier nonunilateral.
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(b)

Fig:2.3: The CS amplifier with a source resistance Rs : (a) Circuit without bias details; (b)
Equivalent circuit with the MOSFET represented by its T model.

From the fig 2.3(b), we see that the input resistance Ri, is infinite and thus vi = vse. Unlike
the CS amplifier, however, here only a fraction of v; appears between gate and source as vgs .
It can be determined from the voltage divider composed of 1 / gn and Rs that appears across
the amplifier input, as follows:

. S l’fgm — U
& ‘1 "ng + R.t 1+ ngs

Thus we can use the value of Rs to control the magnitude of the signal vg and thereby ensure
that Vg does not become too large and cause unacceptably high nonlinear distortion. This is

the first benefit of including resistor Rs.
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Including Rs also improves the performance of negative feedback referring 2.3(a). If while
keeping vi constant, for some reason the drain current increases, the source current also will
increase, resulting in an increased voltage drop across Rs . Thus the source voltage rises, and
the gate-to-source voltage decreases. The latter effect causes the drain current to decrease,
counteracting the initially assumed change, an indication of the presence of negative
feedback. But negative feedback is significant at the expense of reduction in gain.

The output voltage is obtained by multiplying the controlled-source current i by Rp ,

w,= —i R,

o

The current 1 in the source lead can be found by dividing vi by the total resistance in the

source,

. f'; _ gﬂr )_I
' l/gm_'_Rs B (1 +ng_\. v

Thus, the voltage gain Ayo can be found as

A — o _ RD
s 1/ g, + R,
which can also be expressed as
A, = — Zmfp
‘ 1 +g2,R;

Above equation indicates that including the resistance reduces the voltage gain by the factor
(1+gmRs) . It can also be shown that the amount of negative feedback added is (1+gmRs)
introduced by Rs. It is also the same factor by which bandwidth and other performance
parameters improve. Because of the negative-feedback action of Rs it is known as a source-

degeneration resistance.

It can also be interpreted from the drain current expression i that , the quantity inside the
brackets can be though of as effective conductance with Rs included. Thus including Rs

reduces the transconductance by the factor (1+gmRs).

The voltage gain between gate and drain is equal to the ratio of the total resistance in the

drain Rp to the total resistance in the source ( 1+gm Rs).

Total resistance in drain

Voltage gain from gate to drain = — - -
Total resistance in source
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Finally, we consider the situation of a load resistance Rr connected at the output. We can
obtain the gain Av using the open-circuit voltage gain Avo together with the output resistance

Ro which can be found by inspection to be
Ro = RQ

Alternatively, Av -can be obtained by simply replacing Rp in equation Avo by Rp || R ; thus

A = _ RD || Rf_
N 1/g.+R,
Or
A4 = _gm(RD " RI)
! 1 +ng.i

Finally, note that because Rix is infinite vi = vsig, and the overall voltage gain Gy is equal to

Av .
2.14 The Common Drain Amplifier or Source Follower:

The last of the basic MOSFET amplifier configurations is the common-drain amplifier, an
important circuit that finds application in the design of both small-signal amplifiers as well as
amplifiers that are required to handle large signals and deliver substantial amounts of signal
power to a load. The common drain amplifier is more commonly known as the source

follower.
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The Need for Voltage Buffers:

Before embarking on the analysis of the source follower, it is useful to look at one of its more
common applications. Consider the situation depicted in Fig. 2.4(a). A signal source
delivering a signal of reasonable strength (1 V) with an internal resistance of 1 M is to be

connected to a 1-k load resistance.

R, =1MQ Ry=1MQ

(a) (b)

Fig:2.4: Illustrating the need for a unity-gain buffer amplifier

Connecting the source to the load directly as in Fig. 2.4(b) would result in severe attenuation
of the signal; the signal appearing across the load will be 1/ (1000 + 1) only of the input

signal or about 1 mV.

An alternative course of action is suggested in Fig. 2.4(c). Here we have interposed an
amplifier between the source and the load. Our amplifier, however, is unlike the amplifiers
we have been studying in this chapter thus far; it has a voltage gain of only unity. This is
because our signal is already of sufficient strength and we do not need to increase its
amplitude. Note, however, that our amplifier has a very large input resistance, thus almost all
of vsig (1.e., 1 V) will appear at the input of the amplifier proper. Since the amplifier has a low
output resistance (1002 ), 90% of this signal (0.9 V) will appear at the output, obviously a
very significant improvement over the situation without the amplifier. As will be seen
shortly, the source follower can easily implement the unity-gain buffer amplifier shown in

Fig. 2.4(c).

53



MODULE - 2

Characteristic Parameters of the Source Follower:

Figure 2.5(a) shows a source follower with the bias circuit omitted. The source follower is
fed with a signal generator (vsig , Rsig) and has a load resistance Rr connected between the
source terminal and ground. We shall assume that Ri. includes both the actual load and any
other resistance that may be present between the source terminal and ground (e.g., for biasing
purposes). Normally, the actual load resistance would be much lower in value than such other

resistances and thus would dominate.
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Since the MOSFET has a resistance Rp connected in its source terminal, it is most convenient
to use the T model, as shown in Fig. 2.5(b). Note that we have included ro, simply because it
is very easy to do so. However, since ro in effect appears in parallel with Ry, and since in
discrete circuits ro >> R , we can neglect ro and obtain the simplified equivalent circuit

shown in Fig. 2.5(c). From the latter circuit we can write by inspection
R, = o=

mn

and obtain Ay from the voltage divider formed by 1/ gn and Ry as
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£ RL
N i - RL + lffgm

Setting Ri. = o0, we obtain

The output resistance is found by setting vi = 0 (i.e., by grounding the gate). Now looking
back into the output terminal, excluding Rr , we simply see 1 / gm, thus

R, = 1/g,
The unity open-circuit voltage gain together with Ro can be used to find Ay when a load
resistance Ry is connected. Finally, because of the infinite Rin, vi = vsig , and the overall

voltage gain is

— 4 = Ry
Thus Gy will be lower than unity. However, because 1/ gn is usually low, the voltage gain

can be close to unity. The unity open-circuit voltage gain in Equation above as Avo indicates

that the

(c)

Figure 2.5 (a) Common-drain amplifier or source follower. (b) Equivalent circuit of the

source follower obtained by replacing the MOSFET with its T model. Note that ro appears in
parallel with Ry and in discrete circuits, ro >> R . Neglecting ro , we obtain the simplified

equivalent circuit in ( ¢).
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voltage at the source terminal will follow that at the input, hence the name source follower. In
conclusion, the source follower features a very high input resistance (ideally, infinite), a
relatively low output resistance, and an open-circuit voltage gain that is near unity (ideally,
unity). Thus the source follower is ideally suited for implementing the unity-gain voltage
buffer of Fig. 2.4(c). The source follower is also used as the output (i.e., last) stage in a
multistage amplifier, where its function is to equip the overall amplifier with a low output
resistance, thus enabling it to supply relatively large load currents without loss of gain (i.e.,

with little reduction of output signal level).

2.15 Comparison Of MOSFET Amplifiers:

Characteristics™"
Amp.":_'ﬁer l'_}‘pe Rin A-.Io Ro AT' G-.-
Common source
{Flg. 5'45) eo _ngD RD _gm(RD ” Rl_) _gm(RD " RL)
Common source o a g,,,RD RD 'gm(RD || RL) B gm(RD || Ri)
with R.r (Fig. 1 +ng‘ 1+ .ngr 1+ ngr
547) ) ' '
Ryl R, _ RollR,
lz’{gm +Rj l’fgn!+R.s
Common gate
(Fig. 5.43) 1 gnr, R,  g.(RyllR) _RpllR,
Em Rsig"' lffgm
Source follower
(Fig. 5.50) oo | 1 _ R R
gm Rl_ + ]‘;gm RL + ljgm

In addition to the remarks already made throughout this section about the characteristics and

areas of applicability of the various configurations, we make the following concluding points:

1. The CS configuration is the best suited for realizing the bulk of the gain required in an
amplifier. Depending on the magnitude of the gain required, either a single stage or a cascade

of two or three stages can be used.

2. Including a resistor Rs in the source lead of the CS stage provides a number of

performance improvements at the expense of gain reduction.

3. The low input resistance of the CG amplifier makes it useful only in specific applications.

As well as, it has a much better high-frequency response than the CS amplifier. This
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superiority makes it useful as a high-frequency amplifier, especially when combined with the

CS circuit..

4.The source follower finds application as a voltage buffer for connecting a high resistance
source to a low-resistance load and as the output stage in a multistage amplifier where its

purpose is to equip the amplifier with a low output resistance.
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2.2 MOSFET internal capacitances and High frequency model:
The MOSFET:

From our study of the physical operation of the MOSFET, we know that the device has
internal capacitances. In fact, we used one of these, the gate-to-channel capacitance, in our
derivation of the MOSFET characteristics. We did, however, implicitly assume that the
steady-state charges on these capacitances are acquired instantaneously. In other words, we
did not account for the finite time required to charge and discharge the various internal
capacitances. As a result, the device models we derived, such as the small-signal model, do
not include any capacitances. The use of these models would predict constant amplifier gains
independent of frequency. We know, however, that this (unfortunately) does not happen; in
fact, the gain of every MOSFET amplifier falls off at some high frequency. Similarly, the
MOSFET digital logic inverter exhibits a finite nonzero propagation delay. To be able to
predict these results, the MOSFET model must be augmented by including internal

capacitances. This is the subject of this section.

To visualize the physical origin of the various internal capacitances, there are basically two

types of internal capacitance in the MOSFET.
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1. The gate capacitive effect: The gate electrode (polysilicon) forms a parallel-plate capacitor
with the channel, with the oxide layer serving as the capacitor dielectric. We discussed the

gate (or oxide) capacitance and denoted its value per unit area as Cox.

2. The source-body and drain-body depletion-layer capacitances: These are the capacitances
of the reverse-biased pn junctions formed by the n+ source region (also called the source
diffusion) and the p-type substrate and by the n+ drain region (the drain diffusion) and the

substrate.

These two capacitive effects can be modelled by including capacitances in the MOSFET

model between its four terminals, G, D, S, and B. There will be five capacitances in total:

Cgs, Cgd, Cgb, Csb, and Cdb, where the subscripts indicate the location of the capacitances
in the model. In the following, we show how the values of the five model capacitances can be

determined. We will do so by considering each of the two capacitive effects separately.
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2.21 The Gate Capacitive Effect:

The gate capacitive effect can be modelled by the three capacitances Cgs, Cgd, and Cgb. The

values of these capacitances can be determined as follows:

1. When the MOSFET is operating in the triode region at small vps, the channel will be of
uniform depth. The gate-channel capacitance will be WL Cox and can be modelled by

dividing it equally between the source and drain ends; thus,

Cy = Coy = WL C,, (triode region)
This is obviously an approximation (as all modeling is), but it works well for trioderegion
operation even when vps is not small

2. When the MOSFET operates in saturation, the channel has a tapered shape and is pinched

off at or near the drain end. It can be shown that the gate-to-channel capacitance in this case
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is approximately (2/3 ) WL Cox and can be modeled by assigning this entire amount to Cgs,

and a zero amount to Cgd (because the channel is pinched off at the drain); thus,

2

C, = WWLC,
&=

(saturation region)

3. When the MOSFET is cut off, the channel disappears, and thus Cgs = Cgd = 0. However,
we can (after some rather complex reasoning) model the gate capacitive effect by assigning a

capacitance WL Cox to the gate-body model capacitance; thus

Cc,, = C 0]

g5 gd =

} (cutoff)
Co= WLC,,

4. There is an additional small capacitive component that should be added to Cgs and Cgd in
all the preceding formulas. This is the capacitance that results from the fact that the source
and drain diffusions extend slightly under the gate oxide. If the overlap length is denoted

Lov, we see that the overlap capacitance component is

C,, = WL, C,,

Typically, Lov =0.05 to 0.1 L.
2.22 The junction Capacitances:

The depletion-layer capacitances of the two reverse-biased pn junctions formed between each
of the source and the drain diffusions and the body can be determined using the formula

shown below.

C,

= J0

(“J. = |' =
1+ £

Vo

Thus, for the source diffusion, we have the source-body capacitance, Csb

C _ C sh0
~sh

Vg

1+
J’lo

where Csb0 is the value of Csb at zero body-source bias, VSB is the magnitude of the reverse
bias voltage, and VO is the junction built-in voltage (0.6 V to 0.8 V). Similarly, for the drain
diffusion, we have the drain-body capacitance Cdb,
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where Cdb0 is the capacitance value at zero reverse-bias voltage, and Vpg is the magnitude of
this reverse-bias voltage. Note that we have assumed that for both junctions, the grading

coefficient m=1/2 .

It should be noted also that each of these junction capacitances includes a component arising
from the bottom side of the diffusion and a component arising from the side walls of the
diffusion. In this regard, observe that each diffusion has three side walls that are in contact
with the substrate and thus contribute to the junction capacitance (the fourth wall is in contact
with the channel). In more advanced MOSFET modelling, the two components of each of the

junction capacitances are calculated separately.

The formulas for the junction capacitances in above equations assume small-signal operation.
These formulas, however, can be modified to obtain approximate average values for the
capacitances when the transistor is operating under large-signal conditions such as in logic

circuits.
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2.23 The High — Frequency MOSFET Model:

Figure 2.6(a) shows the small-signal model of the MOSFET, including the four capacitances
Cgs, Cgd, Csb, and Cdb. This model can be used to predict the high-frequency response of
MOSFET amplifiers. When the source is connected to the body, the model simplifies
considerably, as shown in Fig. 2.6(b). In this model, Cgd, although small, plays a significant
role in determining the high-frequency response of amplifiers and thus must be kept in the
model. Capacitance Cdb, on the other hand, can usually be neglected, resulting in significant

simplification of manual analysis. The resulting circuit is shown in Fig. 2.6(c).
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Figure 2.6 (a) High-frequency, equivalent-circuit model for the MOSFET. (b) The equivalent
circuit for the case in which the source is connected to the substrate (body). (c¢) The

equivalent-circuit model of (b) with Cdb neglected (to simplify analysis).
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The MOSFET Unity-Gain Frequency (fr):

A figure of merit for the high-frequency operation of the MOSFET as an amplifier is the
unity-gain frequency, fr, also known as the transition frequency, which gives rise to the
subscript T. This is defined as the frequency at which the short-circuit current-gain of the
common-source configuration becomes unity. Figure 2.7 shows the MOSFET hybrid-n
model with the source as the common terminal between the input and output ports. To
determine the short-circuit current gain, the input is fed with a current-source signal I; and the
output terminals are short-circuited. It can be seen that the current in the short circuit is given
by
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5

Fig 2.7: Determining the short circuit current gain Io / Ii

Recalling that Cgd is small, at the frequencies of interest the second term in this equation can

be neglected,
In = gm 'Vgs
we can express Vgs in terms of the input current [; as

Ve, = 175(C,, + Co)

Therefore,

by

o Em

7, T S(Cg+ Cop

For physical frequencies s = jo, it can be seen that the magnitude of the current gain becomes

unity at the frequency
wy = gm/(c-‘g.s +x (-‘ga")
Thus the unity-gain frequency fr = ot /27 is

_ Eon
Jr = 2m(Cpy + Cru)

since fr is proportional to gm and inversely proportional to the MOSFET internal
capacitances, the higher the value of fr, the more effective the MOSFET becomes as an

amplifier.

Typically, fr ranges from about 100 MHz for the older technologies (e.g., a 5-um CMOS
process) to many GHz for newer high-speed technologies (e.g., a 0.13-um CMOS process).

The Amplifier Frequency Response:

Thus far, we have assumed that the gain of MOS amplifiers is constant, independent of the
frequency of the input signal. This would imply that MOS amplifiers have infinite bandwidth,

which of course is not true. To illustrate, we show in Fig. 2.7 a sketch of the magnitude of the
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gain of a common-source amplifier versus frequency. Observe that there is indeed a wide
frequency range over which the gain remains almost constant. This obviously is the useful
frequency range of operation for the particular amplifier. Thus far, we have been assuming

that our amplifiers are operating in this frequency band, called the midband.

Figure 2.7 indicates that at lower frequencies, the magnitude of amplifier gain falls off. This
is because the coupling and bypass capacitors no longer have low impedances. Recall that we
assumed that their impedances were small enough to act as short circuits. Although this can
be true at midband frequencies, as the frequency of the input signal is lowered, the reactance
of each of these capacitors becomes significant, and it can be shown that this results in the

overall voltage gain of the amplifier decreasing.

Figure 2.7 indicates also that the gain of the amplifier falls off at the high-frequency end. This
is due to the internal capacitive effects in the MOSFET. It is important for the reader to
realize that for every MOS amplifier there is a finite band over which the gain is almost
constant. The boundaries of this useful frequency band or midband, are the two frequencies
and , at which the gain drops by a certain number of decibels (usually 3 dB) below its value at
midband. As indicated in Fig. 2.7, the amplifier bandwidth, or 3-dB bandwidth, is defined as
the difference between the lower ( fi ) and the upper or higher (fi ) 3-dB frequencies:
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Fig:2.7. A sketch of the frequency response of a CS amplifier delineating the three frequency

bands of interest

A figure of merit for the amplifier is its gain—bandwidth product, defined as

GB = |Ay| BW

where |Awm| 1s the magnitude of the amplifier gain in the midband.
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2.32 Low Frequency Response Of CS Amplifier:
The CS Amplifier:

Figure 2.8(a) shows a discrete-circuit, common-source amplifier utilizing coupling capacitors
Cci

and Cc2 and bypass capacitor Cs. We wish to determine the effect of these capacitances on
the gain Vo / Vsig of the amplifier. As mentioned before, at midband frequencies, these
capacitances have negligibly small impedances and can be assumed to be perfect short
circuits for the purpose of calculating the midband gain. At low frequencies, however, the
reactance 1/joC of each of the three capacitances increases and the amplifier gain decreases,

as we shall now show.
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Determining Vo / Vsig:

To determine the low-frequency gain or transfer function of the common-source amplifier,
we show in Fig. 2.8(b) the circuit with the dc sources eliminated (current source I open-
circuited and voltage source Vpp short-circuited). We shall perform the small-signal analysis
directly on this circuit. However, we will ignore ro. This is done in order to keep the analysis
simple and thus focus attention on significant issues. The effect of ro on the low-frequency

operation of this amplifier is minor.

To determine the gain Vo/Vsig, we start at the signal source and work our way through the
circuit, determining Vg, 14, lo, and Vo, in this order. To find the fraction of Vsig that appears

at the transistor gate, V, we use the voltage divider rule at the input to write

L”H = l/sl_, TG
Rg+ — + R,
C 1
Which can be written in alternate form,
R, ;
l’fg — I'-’!s]'g [} 5
- RO‘ + Rsi“ l
g 5+

Cei(Rg+ Rg,)

sig

we see that the expression for the signal transmission from signal generator to amplifier input
has acquired a frequency-dependent factor. From our study of frequency response we
recognize this factor as the transfer function of an STC circuit of the high-pass type with a
break or corner frequency [lo =1/ Cc1 (Rg + Rsig) Thus the effect of the coupling capacitor

Cc1 is to introduce a high-pass STC response with a break frequency that we shall denote wp.

1
"~ Ce(Rs+R,)

sig

Wpy = Wy

Continuing with the analysis, we next determine the drain current Iy by dividing Vg by the

total impedance in the source circuit, which is [( 1/ gm)+( 1/ sCs)] to obtain

Tei™ . 1
— +
gnz :’.(”r‘
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Do

(a)

R | —]

(b}

Fig 2.8: (a) Capacitively coupled common-source amplifier. (b) Analysis of the CS amplifier

to determine its low-frequency transfer function. For simplicity, ro is neglected.

Which can be rewritten in alternate form as,

Id = gnr l”c'

Cs

We observe that CS introduces a frequency-dependent factor, which is also of the STC high

pass type. Thus the amplifier acquires another break frequency,

el

m

4 |

Wpy =

™

-8

To complete the analysis, we find Vo by first using the current divider rule to determine the

fraction of 14 that flows through Ry,

sCen

and then multiplying Io by Rr to obtain
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RDRL 5
Cor(Rp+R))

J/O = IORI. - _‘(d

from which we see that Cc> introduces a third STC high-pass factor, giving the amplifier a

third break frequency at

1

@, = —————
3 Ce(Rp+Ry)

The overall low-frequency transfer function of the amplifier can be found by combining

above equations and replacing break frequencies by their symbols,

:— - (R o )[g ol ROV 72-) (5 550)

Which can be expressed in the form

V, 5 5 5
V. :A-'”e+co 5 + @ 5 + @
i : P S Pt p3

sig

Where Am , mid band gain is given by,

Rg
R;+R

sig

Ay = - [g.(Rp I R.)]

Determining the Lower 3-dB Frequency, fi:

The magnitude of the amplifier gain [Vo / Vsig], at frequency can be obtained by substituting
s =jl! in the equation and evaluating the magnitude of the transfer function. In this way, the
frequency response of the amplifier can be plotted versus frequency, and the lower 3-dB
frequency fi can be determined as the frequency at which [Vo / Vsig] drops to |[Am | / V2.
Observe that since the break frequencies are sufficiently separated, their effects appear
distinct. At each break frequency, the slope of the asymptote to the gain function increases by

20 dB/decade.

3336 T, €30 FONT® NPTOD T)e0edey), RedETTRWE). s o & I,
WRORE aDROT aNI), WMOF B TOONET BRIV, 239 °5a300e S
WIPRIE  DDRDOT BVEBODNWIOEY. &8 OLICIN, 30 FONIE 3336
&3OV ONT, 3BIETT, DT 20N O3RLRAWITIR, NI, TR 3-832)
E3e3ZER P R LI, [ / DA, ] B ONES €333 200N DBFEDR WD)
R0 | / 2. BT 3WTIEIND) AOTRY, LB E3,B0)TWO0T, YN
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Figure 2.9: Sketch of the low-frequency magnitude response of a CS amplifier for which the

three pole frequencies are sufficiently separated for their effects to appear distinct.
2.33 High — Frequency Response Of CS Amplifier:

Figure 2.9(a) shows the high-frequency, equivalent-circuit model of a CS amplifier Observe
that the circuit in Fig. 2.9(a) is general; for instance, it includes a resistance Rg, which arises
only in the case of a discrete-circuit amplifier. Also, Rp can be either a passive resistance or
the output resistance of a current-source load, and similarly for Rr . The equivalent circuit of
Fig. 9.13(a) can be simplified by utilizing Thévenin theorem at the input side and by
combining the three parallel resistances at the output side. The resulting simplified circuit is
shown in Fig. 2.9(b). The midband gain Awm can be found from this circuit by setting Cgs and

Cga to zero. The result is
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Ay = 5= = —-——Rm'j——-(g,,,RE )
Ve R;+ R,
The equivalent circuit in Fig. 2.9(b) can be further simplified if we can find a way to deal
with the bridging capacitor Cgd that connects the output node to the input side. Toward that
end, consider first the output node. It can be seen that the load current is (gm Vgs — Igd), where
(gm Vgs) is the output current of the transistor and Igq is the current supplied through the very
small capacitance Cgd. At frequencies in the vicinity of fy, which defines the edge of the
midband, it is reasonable to assume that Igq is still much smaller than (gm Vgs), with the result

that Vo can be given approximately by

I/o = _(gnr ['fg 5 ) R!_} = _g:rrRL’ l/gs

L
Ry <
<

Vig C_n—) R o Em Vs r, E

vy

R; J

Yy

(b)

Figure 2.9: Determining the high-frequency response of the CS amplifier: (a) equivalent
circuit; (b) the circuit of (a) simplified at the input and the output;

Where
Ri= "o”RD”RL

Since Vo = Vg5, Vo equation indicates that the gain from gate to drain is —gmRL ', the same

value as in the midband. The current Izq can now be found as
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Igﬂ' = Sng( l"g_t - l”o)
= SC&Fga’I I’”g.r - (_gm RE L’g.r) ]
= SCSG'( 1+ ngE) I’"gs

Now, the left-hand side of the circuit in Fig. 2.9(b), at XX', knows of the existence of Cgd
only through the current Iq. Therefore, we can replace Cgd by an equivalent capacitance Ceq

between the gate and ground as long as Ceq draws a current equal to Igq. That is,

Sc‘eq I”gt - ‘S—C‘gd{ 1 + SmRI} Lfg,r

(c)

(B) 1

-
| I’ o
k7
4 sig

—20 dB/decade

20 log [Ay]

S f(H;
(log scale)

(d)

Figure 2.9 (Continued) (c¢) the equivalent circuit with Cgd replaced at the input side with the
equivalent capacitance Ceq; (d) the frequency response plot, which is that of a low-pass,

single-time-constant circuit.
Which results in

chr - C‘ga‘(l +gnrR£)
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Thus Cgd gives rise to a much larger capacitance Ceq, which appears at the amplifier input.
The multiplication effect that Cgd undergoes comes about because it is connected between
circuit nodes g and d, whose voltages are related by a large negative gain (— gm Rr ' ). This

effect is known as the Miller effect, and (1 + gm Rr ") is known as the Miller multiplier.

Using Ceq enables us to simplify the equivalent circuit at the input side to that shown in Fig.
2.9(c). We recognize the circuit of Fig. 2.9(c) as a single-time-constant (STC) circuit of the
low-pass type. The output voltage Vg of the STC circuit is given by,

R~
e V.

e = ()
= R+ R, e

s
L2

1+

where wo is the corner frequency, the break frequency, or the pole frequency of the STC

circuit
@y = 1/C RS,
With
Cip = Coo+ Coy = Coo+ Coull + 2, R7)
And
Rs’ig_ - Rsig " R

Combining Equations above results in the following expression for the high-frequency gain

of the CS amplifier,

s

@ _ RG 1
Ve N _(R(; + Rs;g{ ngL,)l 4+ 5
@,

Which can be expressed in the form,

I, A g
Ve 1 4 ==
Oy

where Aw is the midband gain and oy is the upper 3-dB frequency,

1

Wy = = ="
‘!F mﬂ C inR:iif__’,

And
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Wy 1

Ju =557 272C R,

We thus see that the high-frequency response will be that of a low-pass STC network with a

3-dB frequency fy determined by the time constant . Figure 2.9(d) shows a sketch of the

magnitude of the high-frequency gain.

Observations:

1.

1.

The upper 3-dB frequency is determined by the interaction of Rz = Rsig || Rg. and Cin
= Cgs + Cod(1 + gm RL") . Since the bias resistance Rg is usually very large, it can be
neglected, resulting in Rsis = Rsig, the resistance of the signal source. It follows that a
large value of Rsig will cause fy to be lowered.

The total input capacitance Cin is usually dominated by Ceq, which in turn is made
large by the multiplication effect that Cgd undergoes. Thus, although Cgd is usually a
very small capacitance, its effect on the amplifier frequency response can be very
significant as a result of its multiplication by the factor ( 1 + gm RL), which is
approximately equal to the midband gain of the amplifier. This is the Miller effect,
which causes the CS amplifier to have a large total input capacitance Cin and hence a
low fh.

To extend the high-frequency response of a MOSFET amplifier, we have to find
configurations in which the Miller effect is absent or at least reduced.

The above analysis, resulting in an STC or a single-pole response, is approximate.
Specifically, it is based on neglecting Igq relative to gm Vgs, an assumption that applies

well at frequencies not too much higher than fy.

)T 3-dB €333 a3, Rsig & BORD oHAN0GE IFEORTDMIBT
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& 3030N AREON) ¥R MIFFITIC BOFIRROT BRTBTONGS. dofn,
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2.41 The Phase Shift Oscillator:

The basic structure of the phase-shift oscillator is shown in Fig. 2.10. It consists of a negative
gain amplifier (—K) with a three-section (third-order) RC ladder network in the feedback. The
circuit will oscillate at the frequency for which the phase shift of the RC network is 180°.
Only at this frequency will the total phase shift around the loop be 0° or 360°. Here we
should note that the reason for using a three-section RC network is that three is the minimum
number of sections (i.e., lowest order) that is capable of producing a 180° phase shift at a

finite frequency.

For oscillations to be sustained, the value of K should be equal to the inverse of the
magnitude of the RC network transfer function at the frequency of oscillation. However, to
ensure that oscillations start, the value of K has to be chosen slightly higher than the value
that satisfies the unity-loop-gain condition. Oscillations will then grow in magnitude until

limited by some nonlinear control mechanism.

Figure 2.10 shows a practical phase-shift oscillator with a feedback limiter, consisting of
diodes D1 and D2 and resistors R1, R2, R3, and R4 for amplitude stabilization. To start
oscillations, Rf has to be made slightly greater than the minimum required value. Although
the circuit stabilizes more rapidly and provides sine waves with more stable amplitude, if Rf

is made much larger than this minimum, the price paid is an increased output distortion.
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Fig: 2.10: A practical phase-shift oscillator with a limiter for amplitude stabilization.

2.42 LL.C and Crystal Oscillators:

Oscillators utilizing transistors (FETs or BJTs), with LC-tuned circuits or crystals as
feedback elements, are used in the frequency range of 100 kHz to hundreds of megahertz.
They exhibit higher Q than the RC types. However, LC oscillators are difficult to tune over

wide ranges, and crystal oscillators operate at a single frequency.
LC Tuned Oscillators:

Figure 2.11 shows two commonly used configurations of LC-tuned oscillators. They are
known as the Colpitts oscillator and the Hartley oscillator. Both utilize a parallel LC circuit
connected between collector and base (or between drain and gate if a FET is used) with a
fraction of the tuned-circuit voltage fed to the emitter (the source in a FET). This feedback is
achieved by way of a capacitive divider in the Colpitts oscillator and by way of an inductive
divider in the Hartley circuit. To focus attention on the oscillator’s structure, the bias details
are not shown. In both circuits, the resistor R models the combination of the losses of the

inductors, the load resistance of the oscillator, and the output resistance of the transistor.

If the frequency of operation is sufficiently low that we can neglect the transistor
capacitances, the frequency of oscillation will be determined by the resonance frequency of
the parallel-tuned circuit (also known as a tank circuit because it behaves as a reservoir for

energy storage). Thus for the Colpitts oscillator we have
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and for the Hartley oscillator we have

w, = 1/./(L,+ L,)C

The ratio or determines the feedback factor and thus must be adjusted in conjunction with the
transistor gain to ensure that oscillations will start. To determine the oscillation condition for
the Colpitts oscillator, we replace the transistor with its equivalent circuit, as shown in Fig.
2.11. To simplify the analysis, we have neglected the transistor capacitance C, ( Cga for a
FET). Capacitance C; (Cgs for a FET), although not shown, can be considered to be a part of
C2. The input resistance rr (infinite for a FET) has also been neglected, assuming that at the
frequency of oscillation rr >> ( 1/[]c2) . Finally, as mentioned earlier, the resistance R

includes ro of the transistor.

To find the loop gain, we break the loop at the transistor base, apply an input voltage V , and
find the returned voltage that appears across the input terminals of the transistor. We then

equate the loop gain to unity.
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The frequency of oscillations is determined by

=4 ,\/L( (“(;f(j

which is the resonance frequency of the tank circuit.

For sustained oscillations, the magnitude of the gain from base to collector (gmR) must be
equal to the inverse of the voltage ratio provided by the capacitive divider, which from Fig.
2.11(a) can be seen to be Vep / Vee = C1 / Ca. Of course, for oscillations to start, the loop gain

must be made greater than unity, a condition that can be stated in the equivalent form

g, R>C C
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|

Fig:2.11: Complete Circuit for a Colpitt’s Oscillator

As oscillations grow in amplitude, the transistor’s nonlinear characteristics reduce the
effective value of gm and, correspondingly, reduce the loop gain to unity, thus sustaining the
oscillations. Here the radio-frequency choke (RFC) provides a high reactance at but a low dc

resistance.
Crystal Oscillators:

A piezoelectric crystal, such as quartz, exhibits electromechanical-resonance characteristics
that are very stable (with time and temperature) and highly selective (having very high Q
factors). The circuit symbol of a crystal is shown in Fig. 2.12(a), and its equivalent circuit
model is given in Fig. 2.12(b). The resonance properties are characterized by a large
inductance L (as high as hundreds of henrys), a very small series capacitance Cs (as small as
0.0005 pF), a series resistance r representing a Q factor wor/r that can be as high as a few
hundred thousand, and a parallel capacitance Cp (a few picofarads). Capacitor Cp represents
the electrostatic capacitance between the two parallel plates of the crystal. Note that Cp >>

Cs.
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ATREEF  DPTODT,  BINYSD), ANBePNT.  2.12 (D). 9INTES
MEIOTEANT I, BRB, BOBTRY O (SLRTTB) BYNFEY, B),) sNROT
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Fig:2.12: A piezoelectric crystal. (a) Circuit symbol. (b) Equivalent circuit. (¢) Crystal
reactance versus frequency.

The crystal has two resonance frequencies: a series resonance at ®s.

And a parallel resonance at [p,
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we note that op > ws. However, since Cp >> Cs, the two resonance frequencies are very
close. The extremely stable resonance characteristics and the very high Q factors of quartz
crystals result in oscillators with very accurate and stable frequencies. Crystals are available

with resonance frequencies in the range of a few kilohertz to hundreds of megahertz.
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3.1 Output stages and Power Amplifiers: Introduction, Classification of Output Stages,
Class — A output stage, Class — B output stage: Transfer Characteristics, Power
Dissipation, Power Conversion Efficiency, Class — AB Output stage, Class — C tuned

Amplifier.

Feedback Amplifier: General feedback structure, Properties of negative feedback, the
four basic feedback topologies, The series — shunt, series — series, shunt — shunt and shunt

— series amplifiers (Qualitative Analysis)

3.11 INTRODUCTION:

An important function of the output stage is to provide the amplifier with a low output
resistance so that it can deliver the output signal to the load without loss of gain. Since the
output stage is the final stage of the amplifier, it usually deals with relatively large signals.
Thus the small-signal approximations and models either are not applicable or must be used
with care. Nevertheless, linearity remains a very important requirement. In fact, a measure of
goodness of the output stage is the total harmonic distortion (THD) it introduces. This is the
rms value of the harmonic components of the output signal, excluding the fundamental,
expressed as a percentage of the rms of the fundamental. The most challenging requirement in
the design of an output stage is for it to deliver the required amount of power to the load in an
efficient manner. This implies that the power dissipated in the output-stage transistors must be
as low as possible. This requirement stems mainly from the fact that the power dissipated in a
transistor raises its internal junction temperature, and there is a maximum temperature (in the
range of 150°C to 200°C for silicon devices) above which the transistor is destroyed. A high
power-conversion efficiency also may be required to prolong the life of batteries employed in
battery-powered circuits, to permit a smaller, lower-cost power supply, or to obviate the need
for cooling fans. We begin this chapter with a study of the various output-stage configurations
employed in amplifiers that handle both low and high power. In this context, “high power”
generally means greater than 1 W. We then consider the specific requirements of BJTs

employed in the design of high-power output stages, called power transistors.
A power amplifier is simply an amplifier with a high-power output stage. Examples of discrete-

and integrated-circuit power amplifiers will be presented. Since BJTs can handle much larger

currents than MOSFETs, they are preferred in the design of output stages
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3.12 Classification Of Output stages:

Output stages are classified according to the collector current waveform that results when an
input signal is applied. Figure 3.12 illustrates the classification for the case of a sinusoidal input
signal. The class A stage, whose associated waveform is shown in Fig. 3.12(a), is biased at a
current Ic greater than the amplitude of the signal current I." , . Thus the transistor in a class A
stage conducts for the entire cycle of the input signal; that is, the conduction angle is 360°. In
contrast, the class B stage, whose associated waveform is shown in Fig. 3.12(b), is biased at
zero dc current. Thus a transistor in a class B stage conducts for only half the cycle of the input

sine wave, resulting in a conduction angle of 180°.

ic A

T 7

1 1 1 - ¢ —

(a) (b)

ic A ich

AV AYER
—— 0 o

() (d)
Figure 3.12: Collector current waveforms for transistors operating in (a) class A, (b) class B,

(c) class AB, and (d) class C amplifier stages.

As will be seen later, the negative halves of the sinusoid will be supplied by another transistor
that also operates in the class B mode and conducts during the alternate half-cycles. An
intermediate class between A and B, appropriately named class AB, involves biasing the
transistor at a nonzero dc current much smaller than the peak current of the sine-wave signal.

As aresult, the transistor conducts for an interval slightly greater than half a cycle, as illustrated
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in Fig. 3.12(c). The resulting conduction angle is greater than 180° but much less than 360°.
The class AB stage has another transistor that conducts for an interval slightly greater than that
of the negative half-cycle, and the currents from the two transistors are combined in the load.
It follows that, during the intervals near the zero crossings of the input sinusoid, both transistors
conduct. Figure 3.12(d) shows the collector-current waveform for a transistor operated as a
class C amplifier. Observe that the transistor conducts for an interval shorter than that of a
halfcycle; that is, the conduction angle is less than 180°. The result is the periodically pulsating
current waveform shown. To obtain a sinusoidal output voltage, this current is passed through
a parallel LC circuit, tuned to the frequency of the input sinusoid. The tuned circuit acts as a
bandpass filter and provides an output voltage proportional to the amplitude of the fundamental
component in the Fourier-series representation of the current waveform. Class A, AB, and B
amplifiers are studied in this chapter. They are employed as output stages of op amps and audio
power amplifiers. In the latter application, class AB is the preferred choice, for reasons that
will be explained in the sections to follow. Class C amplifiers are usually employed for radio-
frequency (RF) power amplification (required, e.g., in mobile phones and radio and TV
transmitters). The design of class C amplifiers is a rather specialized topic and is not included
in this book. However, we should point out that the tuned-resonator oscillator circuits operate
inherently in the class C mode. Although the BJT has been used to illustrate the definition of
the various output-stage classes, the same classification applies to output stages implemented
with MOSFETs. Furthermore, the classification above extends to amplifier stages other than
those used at the output. In this regard, all the common-emitter, common-base, and common-
collector amplifiers (and their FET counterparts) studied in earlier chapters fall into the class

A category.
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3.13 Class — A Output Stage:

Because of its low output resistance, the emitter follower is the most popular class A output

stage.
Transfer Characteristic:

Figure 3.13 shows an emitter follower Qi biased with a constant current I supplied by transistor
Q2. Since the emitter current ig1 = I + =i, the bias current I must be greater than the largest
negative load current; otherwise, Qi cuts off and class A operation will no longer be

maintained.

The transfer characteristic of the emitter follower of Fig. 3.13 is described by

Vo — Yy UBE1
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where veg1 depends on the emitter current ig1 and thus on the load current i.. If we neglect the
relatively small changes in vgg1 (60 mV for every factor-of-10 change in emitter current), the

linear transfer curve shown in Fig. 3.14 results.

+¥ee

Uy

/ .
= 1 l R, As indicated, the positive limit of the
vy L linear region is determined by the saturation of

Qs
Qq; thus

—Vee

o P8 7 i
YOmax — ’('(‘ - l('f.‘lsat

Figure 3.13: An emitter follower (Q1) biased with a constant current I supplied by transistor

Qo.

In the negative direction, depending on the values of I and RL, the limit of the linear region is

determined either by Q1 turning off,

YOmin — _IRI

vo ) Figure:3.11Transfer
(Vee — Veeisad

characteristic of the emitter
follower in Fig. 3.11. This

linear characteristic 1s

“  obtained by neglecting the

change in vpgi with i.. The

—IR,
maximum positive output 1s

(—Vee + Veraad

determined by the saturation
of Q1. In the negative direction, the limit of the linear region is determined either by Q1 turning

off or by Q2 saturating, depending on the values of I and Ry.
Or by Q2 saturating,

; — _U .
VOmin — Vee + Vegs

sat
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The absolutely lowest (most negative) output voltage is that given by above equation and is
achieved provided the bias current I is greater than the magnitude of the corresponding load

current,

/> I—’:'(' + I;‘EZ»;n'
a R,

Signal Waveforms:

Consider the operation of the emitter-follower circuit of Fig. 3.13 for sine-wave input.
Neglecting Vcesa, we see that if the bias current I is properly selected, the output voltage can
swing from —Vcc to +Vcc with the quiescent value being zero, as shown in Fig. 3.15(a). Figure
3.15(b) shows the corresponding waveform of vce1 = Vce — vo. Now, assuming that the bias

current [ is selected to allow a maximum negative load current of Vcc / Re , that is

I = Vec/R,

the collector current of Q; will have the waveform shown in Fig. 3.15(c). Finally, Fig. 3.15(d)

shows the waveform of the instantaneous power dissipation in Q1,
Pp1 = vepic
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Power Dissipation:

Figure 3.15(d) indicates that the maximum instantaneous power dissipation in Q is Vcc I. This
is equal to the power dissipation in Q; with no input signal applied, that is, the quiescent power
dissipation. Thus the emitter-follower transistor dissipates the largest amount of power when
vo = 0. Since this condition (no input signal) can easily prevail for prolonged periods of time,
transistor Q must be able to withstand a continuous power dissipation of Vcc L.

Yo A Veer A
2Vee

V(‘C

\"
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h W _

0 ]
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Figure 3.15: Maximum signal waveforms in the class A output stage of Fig. 3.14 under the
condition I = Vcc / Rr. or, equivalently RL = Ve / 1. Note that the transistor saturation voltages

have been neglected.

The power dissipation in Q; depends on the value of Rr. Consider the extreme case of an output

open circuit, that is, RL = co. In this case, ic1 = I is constant and the instantaneous power
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dissipation in Q; will depend on the instantaneous value of vo. The maximum power dissipation
will occur when vo = —Vcc, for in this case vcgr is a maximum of 2Vcc and pp1 = 2Vece L. This
condition, however, would not normally persist for a prolonged interval, so the design need not
be that conservative. Observe that with an open-circuit load, the average power dissipation in
Qiis Vcc 1. A far more dangerous situation occurs at the other extreme of Ri—specifically, Rr
= 0. In the event of an output short circuit, a positive input voltage would theoretically result
in an infinite load current. In practice, a very large current may flow through Qi, and if the
short-circuit condition persists, the resulting large power dissipation in Q can raise its junction
temperature beyond the specified maximum, causing Q; to burn up. To guard against such a
situation, output stages are usually equipped with short-circuit protection, as will be explained
later. The power dissipation in Q> also must be taken into account in designing an emitter
follower output stage. Since Q2 conducts a constant current I, and the maximum value of vcez
is 2Vcc, the maximum instantaneous power dissipation in Q2 is 2Vec 1. This maximum,
however, occurs when vo = Vcc, a condition that would not normally prevail for a prolonged
period of time. A more significant quantity for design purposes is the average power dissipation

in Qa, which is Ve L.
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Power Conversion Efficiency:

The power-conversion efficiency of an output stage is defined as

_ Load power (P,)

Supply power (Pg)

For the emitter follower of Fig. 3.14, assuming that the output voltage is a sinusoid with the

peak value , the average load power will be,

Since the current in Q2 is constant (I), the power drawn from the negative supply is Vcc 1. The
average current in Q; is equal to I, and thus the average power drawn from the positive supply

is Vcc L. Thus the total average supply power is

@G

Since Vo™ < Vce and Vo, maximum efficiency is obtained when
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P, = Vec=IR,

The maximum efficiency attainable is 25%. Because this is a rather low figure, the class A
output stage is rarely used in high-power applications (>1 W). Note also that in practice the
output voltage swing is limited to lower values to avoid transistor saturation and associated
nonlinear distortion. Thus, the efficiency achieved in practice is usually in the 10% to 20%

range.
3.2 Class — B Output Stage:

Figure 3.16 shows a class B output stage. It consists of a complementary pair of transistors (an

npn and a pnp) connected in such a way that both cannot conduct simultaneously.
Circuit Operation:

When the input voltage v is zero, both transistors are cut off and the output voltage vo is zero.
As vy goes positive and exceeds about 0.5 V, Qn conducts and operates as an emitter follower.
In this case vo follows vi (i.e., vo = vo — ven) and Qn supplies the load current. Meanwhile,
the emitter—base junction of Qp will be reverse-biased by the Vge of Qn, which is approximately

0.7 V. Thus Qp will be cut off.

+Vee
If the input goes negative by more than about 0.5 V,

Ow
Qpr turns on and acts as an emitter follower. Again vo
v o—4 g o, follows vi (i.e., vo = vi + VgBp), but in this case Qp
"SR, supplies the load current and Qn will be cut off. We

Op

conclude that the transistors in the class B stage of Fig.

3.16 are biased at zero current and conduct only when
~Vee
the input signal is present. The circuit operates in a

push—pull fashion: Qn pushes (sources) current into the load when v is positive, and Qp pulls

(sinks) current from the load when v is negative.

Figure:3.16: A class-B output stage.
e Fpedees vl BoF@eNwen, d0GR YA INEYRY BS0TUHIST DI Ve es’

Fpedd e o BRI@INDIT. v Fo3, 50N BRLHIT aHI) Wered 765-17 < Ledwan,
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Transfer Characteristic:

A sketch of the transfer characteristic of the class B stage is shown in Fig. 3.17. Note that there
exists a range of v centered around zero where both transistors are cut off and vo is zero. This

dead band results in the crossover distortion illustrated in Fig. 3.18 for the case of an input sine
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wave. The effect of crossover distortion will be most pronounced when the amplitude of the

input signal is small. Crossover distortion in audio power amplifiers gives rise to unpleasant
sounds.
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Figure 3.17: Transfer characteristic for the class B output stage in Fig. 3.16.
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Figure: 3.18: Illustrating how the dead band in the class B transfer characteristic results in

crossover distortion.
Power Conversion Efficiency:

To calculate the power-conversion efficiency, 1, of the class B stage, we neglect the
crossover distortion and consider the case of an output sinusoid of peak amplitude The
average load power will be

17

P, = ,;_R_,
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The current drawn from each supply will consist of half-sine waves of peak amplitude (Vo /
Rr). Thus the average current drawn from each of the two power supplies will be V" / nRL . It

follows that the average power drawn from each of the two power supplies will be the same,

L Py wp
Pg, = Py = ;[R—I Vee

and the total supply power will be

Thus the efficiency will be given by

_ y_‘é_%)x(git;,, J - = Z
7= GRrR)N ZR,7<) T 2V,

It follows that the maximum efficiency is obtained when is at its maximum. This maximum is
limited by the saturation of Qn and Qp to Vce — Veesat = Vee. At this value of peak output

voltage, the power-conversion efficiency is

Tmax = = = 78.5%

N

This value is much larger than that obtained in the class A stage (25%). Finally, we note that
the maximum average power available from a class B output stage is obtained by substituting

in PL Equation,

~—

3
an
~

N
=2

Power Dissipation:

Unlike the class A stage, which dissipates maximum power under quiescent conditions (vo =
0), the quiescent power dissipation of the class B stage is zero. When an input signal is

applied, the average power dissipated in the class B stage is given by
Pp =Ps—PL

Substituting for Ps from above Equation and for Pr from Equation results in
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N

NI=
&

From symmetry we see that half of Pp is dissipated in Qn and the other half in Qp. Thus Qn
and Qp must be capable of safely dissipating [ / 2 Pp watts. Since Pp depends on V", we must

find the worst-case power dissipation, Ppmax.

Differentiating above Pp Equation w.r.t Vo” and equating the derivative to zero gives the value

of Vo that results in maximum average power dissipation as

124 = SgE
< I)Ihn_n\ ]r «c

Substituting this value in above equation,

Thusa Ppymax = Fppmax =

At the point of maximum power dissipation, the efficiency can be evaluated by substituting

for Vo from Vo” into efficiency Equation, hence, 11 = 50%.

Py h
p 2V3c
Dmax TTZRL N = 50(7(
Pl)max _____________

|

|

| n=78.5%
' |

[ |

| |

| |

|

1 1 >

0 2Wec Ve v, Fig:3.19:Power dissipation of the

class B output stage versus

amplitude of the output sinusoid.
3.3 Class AB Output stage:

Crossover distortion can be virtually eliminated by biasing the complementary output
transistors at a small nonzero current. The result is the class AB output stage shown in Fig.

3.20. A bias voltage VBB is applied between the bases of QN and QP. For vI=0, vO =0,

108



MODULE -3

and a voltage appears across the base—emitter junction of each of QN and QP. Assuming

matched devices,

200 By BT, BToBBY FPUTB Ve £3° L3 VYR, BFTS oS RVB 59T B0
ACRBBDR, ToIBTN BRBWDTBWBD. POB03FY) NI BeedJUTE Ine o
Be e3° BoBToNT. 3.20. 2,08 BPTEMB cYpeed ees DY) , AW B To* DR B Jox* SYNY
ST P0IBT, D aFF 0, o FF 0, DB) B30TV 2eTF-DDEIT® BOZR®

egoaN 2,00 Feedd ees 5ae3dBRWNBT.
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Circuit Operation:

When vI goes positive by a certain amount, the voltage at the base of QN increases by the

same amount and the output becomes positive at an almost equal value

I
2o — Yy > — YBEN

+Vee

On

bias voltage VBB is applied between the

2 | i
ve [ . : % ° Figure 3.20: Class AB output stage. A
> ! ISR,

bases of QN and QP, giving rise to a bias
— Ve current 1Q. Thus, for small vI , both

transistors conduct and crossover distortion is almost completely eliminated.
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The positive vO causes a current iL to flow through RL, and thus iN must increase; that is,

Iy =— Ep Vv i,

The increase in iN will be accompanied by a corresponding increase in VBEN (above the
quiescent value of VBB/2). However, since the voltage between the two bases remains
constant at VBB, the increase in vBEN will result in an equal decrease in vEBP and hence in
iP. The relationship between iN and iP can be derived as follows:

vgen+ Vegp = Vas

» I . ip . [(_)
l;-ln}i+l7-lnz': = 21,.1n7:

s 2
iyip = Ip

Thus, as iN increases, 1P decreases by the same ratio while the product remains constant.
Above Equations can be combined to yield iN for a given iL as the solution to the quadratic

equation

2 .. 2
in—iiny—1I5 = O

From the equations above, we can see that for positive output voltages, the load current is
supplied by QN, which acts as the output emitter follower. Meanwhile, QP will be conducting
a current that decreases as vO increases; for large vO the current in QP can be ignored

altogether.

For negative input voltages the opposite occurs: The load current will be supplied by QP, which
acts as the output emitter follower, while QN conducts a current that gets smaller as vl becomes

more negative. Equations , relating iN and iP, holds for negative inputs as well.

We conclude that the class AB stage operates in much the same manner as the class B circuit,
with one important exception: For small vI, both transistors conduct, and as vl is increased or
decreased, one of the two transistors takes over the operation. Since the transition is a smooth
one, crossover distortion will be almost totally eliminated. Figure 3.21 shows the transfer

characteristic of the class AB stage.

The power relationships in the class AB stage are almost identical to those derived for the class
B circuit . The only difference is that under quiescent conditions the class AB circuit dissipates

a power of VCC IQ per transistor. Since IQ is usually much smaller than the peak load current,
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the quiescent power dissipation is usually small. Nevertheless, it can be taken into account
easily. Specifically, we can simply add the quiescent dissipation per transistor to its maximum
power dissipation with an input signal applied, to obtain the total power dissipation that the

transistor must be able to handle safely.
Yo A

Vee — Veensad) | —— —— — — =
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Fig:3.21: Transfer characteristic of the class AB stage
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3.4 Class C tuned Amplifier:

During a Class C amplifier operation, the collector flows for less than half cycle of AC signal.
A class C amplifier is bias for operation for less than 180° of the input signal cycle and its value
is 80° to 120°.Less than 180° (half cycle) means less than 50% and would operate only with a
tuned or resonant circuit, which provides a full cycle of operation for the tuned or resonant

frequency.

There is a trade-off between efficiency and distortion as the efficiency improves at a large
extended level by reduced conduction angle. However, it also leads to a lot of distortion. The
Class C amplifiers used in RF transmitters usually are operating at a single fixed carrier
frequency. In such applications, the distortion is controlled by a tuned load on the amplifiers.
The input signal is applied to switch the active device (transistor) and so the current is directed

to flow through a tuned load.
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Working Principle Of Class C Amplifier:

Ivm

R —
Q1 E Output Signal
Input Rb Biasing
Signal Resistor

As shown in the above circuit diagram, Resistor Rb connects to the transistor Q1 base. A
biasing resistor which connects to the base of Q1 try to pulls the base of transistor further
downwards and set the operating pointer dc bias point below the cut-off point (In cutoff the
collector current is Ico which will be of micro amperes order and hence can be assumed to be
zero) in the DC load line. The dc load line is the locus of Ic and Vcg at which BJT remains in

active region.

The reason for the major portion of the input signal is absent in the output signal is that the
transistor will start conducting only after the input signal amplitude has risen above the base
emitter voltage (Vbe~0.7V) and according to the result the downward bias voltage caused by

Rb.

As shown in Figure 4, inductor L1 and capacitor C1 forms a tuned circuit which is also called

a tank circuit. LC circuits are used either for generating signals at a particular frequency, or
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picking out a signal at a particular frequency from a more complex signal which extract the

required signal from the pulsed output of the transistor.

A series of current pulses is produced by the transistor (active element) according to the input
which flow through the resonant circuit. The tank circuit oscillates in the frequency of the input
signal by selecting the proper value of L and C. All other frequencies are attenuated by tank

circuit and the tank circuit oscillates in one frequency.

The required frequency is obtained by using a suitably tuned load. The output signal noise can
be eliminated by using additional filters. For transferring the power to the load from the tank

circuit, a coupling transformer is used.

Vee

DC Load Line

Output Signal less than 180°
Unused

Area N T 7 U

Input Signal -

As shown in above figure, it can be observed that the operating point is placed some way below
the cut-off point in the DC load-line and so only a fraction of the input waveform is available

at the output.
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Applications of Class C Amplifier: Class C Amplifier is used in: —
e REF oscillators.
e RF amplifier.
e FM transmitters.
e Booster amplifiers.
e High frequency repeaters.

e Tuned amplifiers etc.
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Advantages of Class C Amplifier: The advantages of Class C Amplifier are as follows: —

o Higher efficiency.
o Best result in RF applications.

e Physical size is suitable for given power

Disadvantages of Class C Amplifier: The disadvantages of Class C Amplifier are as

follows: —

e Poor linearity.

e Not suitable for audio applications.

o Lot ofnoise and RF interference.

o To obtain ideal inductors and coupling transformers it is very difficult.

e Not good dynamic range.
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3.5 Feedback Amplifier:
General Feedback Structure:

Figure 3.51 shows the basic structure of a feedback amplifier. Rather than showing voltages
and currents, Fig. 3.51 is a signal-flow diagram, where each of the quantities x can represent
either a voltage or a current signal. The open-loop amplifier has a gain A; thus its output xo is

related to the input xi by

33 3.51 2o B3odh IPF3 Dwow TES BeedDIBT. Fped W DI BToBNYIY
BpedPT,08 B2y N, 133, 3.51 201 AT} F-Bjoe® TenoeddHoNss, 8 &3 B)oenwd
T, 2,00 Fped e VgH BN FoBeBTRY, B)SARTVBRDD. LB -’ BoHFHDTF 2,08

SEIAY BRODT - © OF - 83003 BT B &3° 0F° 2 - s A e 3 FowoHAT.

ATl 3.51 TP AU e Ay AT qrRaad. Fleeo 10T YaTg gRifquarde,
3R, 3.51 TH Rua-yarg Y@fua o, SY yd$ uikAm x THar Fleew fHar
TouT Ryrd 3iq 3@d. SuA-qu 9@ TH BrISl 3f 3118; 3= YHR T 313eye
xoWWximéﬂﬁ

Source A : » Load

Figure 3.51: General structure of the feedback amplifier. This is a signal-flow diagram, and the

quantities x represent either voltage or current signals.
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The output xo is fed to the load as well as to a feedback network, which produces a sample of

the output. This sample xf is related to xo by the feedback factor .
xr = fx,

The feedback signal xf is subtracted from the source signal xs , which is the input to the

complete feedback amplifier, to produce the signal X; which is the input to the basic amplifier.

X, = X —%

Here we note that it is this subtraction that makes the feedback negative. In essence, negative

feedback reduces the signal that appears at the input of the basic amplifier.

The gain of the feedback amplifier can be obtained by combining above equations

- A4
1 +A4p3

A=

Y

The quantity AP is called the loop gain, a name that follows from Fig. 3.22. For the feedback
to be negative, the loop gain AP must be positive; that is, the feedback signal xf should have
the same sign as xs , thus resulting in a smaller difference signal xi . Equation indicates that for
positive AP the gain with feedback Af will be smaller than the open-loop gain A by a factor
equal to 1 + AP, which is called the amount of feedback.

If, as is the case in many circuits, the loop gain AP is large, Ap >> 1, it follows that

A, = };
which is a very interesting result: The gain of the feedback amplifier is almost entirely
determined by the feedback network. Since the feedback network usually consists of passive
components, which usually can be chosen to be as accurate as one wishes, the advantage of
negative feedback in obtaining accurate, predictable, and stable gain should be apparent. In
other words, the overall gain will have very little dependence on the gain of the basic amplifier,
A, a desirable property because the gain A is usually a function of many manufacturing and
application parameters, some of which might have wide tolerances. We have seen a dramatic
illustration of all of these effects , where the closed loop gain (which is another name for the

gain-with-feedback) is almost entirely determined by the feedback elements.
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Equations above can be combined to obtain the following expression for the feedback signal

xf _ _ApB

=1 +Aﬂx"

Thus for AR >> 1 we see that xf = xs , which implies that the signal xi at the input of the basic
amplifier is reduced to almost zero. Thus if a large amount of negative feedback is employed,
the feedback signal xf becomes an almost identical replica of the input signal xs . An outcome
of this property is the tracking of the two input terminals of an op amp. The difference between
xs and xf', which is xi , is sometimes referred to as the error signal. Accordingly, the input
differencing circuit is often also called a comparison circuit. (It is also known as a mixer.) An

expression for xi can be easily determined as

from which we can verify that for Ap >> 1, xi becomes very small. Observe that negative
feedback reduces the signal that appears at the input terminals of the basic amplifier by the
amount of feedback, (1 + APB). As will be seen later, it is this reduction of input signal that

results in the increased linearity of the feedback amplifier.
3.52 Properties of Negative Feedback:

Gain Desensitivity:

This sensitivity reduction property can be analytically established as follows. We have

Assume that  is constant. Taking differentials of both sides of above equation results in

dAy 1 dA

A, 1+AB) 4
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which says that the percentage change in Af (due to variations in some circuit parameter) is
smaller than the percentage change in A by a factor equal to the amount of feedback. For this

reason, the amount of feedback, 1 + AP, is also known as the desensitivity factor.

Bandwidth Extension:

Consider an amplifier whose high-frequency response is characterized by a single pole. Its gain

at mid and high frequencies can be expressed as

Ay

A6 = T s/

where AM denotes the midband gain and ® H is the upper 3-dB frequency. Application of
negative feedback, with a frequency-independent factor 3, around this amplifier results in a
closed-loop gain Ar (s) given by

A(s)
1+ BA(s)

Afs) =

Substituting for A(s) and results, after a little manipulation,

A/ + AP
) = T o+ 4,5

Thus the feedback amplifier will have a midband gain of Awm / (1+AmP) an upper 3- dB

frequency wur given by
@y = @p(1 + Ay f3)

It follows that the upper 3-dB frequency is increased by a factor equal to the amount of
feedback.
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Figure 3.52: Application of negative feedback reduces the midband gain, increases fH, and

reduces fL, all by the same factor, (1+Awm ), which is equal to the amount of feedback.
Interference Reduction:

Negative feedback can be employed to reduce the interference in an amplifier or, more

precisely, to increase the ratio of signal to interference.

Reduction in Nonlinear Distortion:

The amplifier transfer characteristic can be considerably linearized (i.e., made less nonlinear)
through the application of negative feedback. That this is possible should not be too surprising,
since we have already seen that negative feedback reduces the dependence of the overall
closed-loop amplifier gain on the open-loop gain of the basic amplifier. Thus large changes in
open-loop gain (1000 to 100 in this case) give rise to much smaller corresponding changes in

the closed-loop gain.
3.53 The Four Basic Feedback Topologies:

Based on the quantity to be amplified (voltage or current) and on the desired form of output

(voltage or current), amplifiers can be classified into four categories.

Voltage Amplifiers:

Voltage amplifiers are intended to amplify an input voltage signal and provide an output

voltage signal. The voltage amplifier is essentially a voltage-controlled voltage source. The
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input resistance is required to be high, and the output resistance is required to be low. Since the
signal source is essentially a voltage source, it is convenient to represent it in terms of a
Thévenin equivalent circuit. In a voltage amplifier, the output quantity of interest is the output
voltage. It follows that the feedback network should sample the output voltage, just as a
voltmeter measures a voltage. Also, because of the Thévenin representation of the source, the

feedback signal xf should be a voltage that can be mixed with the source voltage in series.

The most suitable feedback topology for the voltage amplifier is the voltage-mixing, voltage-
sampling one shown in Fig. 3.24. Because of the series connection at the input and the parallel
or shunt connection at the output, this feedback topology is also known as series—shunt
feedback. As will be shown, this topology not only stabilizes the voltage gain but also results
in a higher input resistance (intuitively, a result of the series connection at the input) and a
lower output resistance (intuitively, a result of the parallel connection at the output), which are

desirable properties for a voltage amplifier.

The increased input resistance results because V¢ subtracts from Vs resulting in a smaller signal
Vi at the input of the basic amplifier. The lower V; in turn, causes the input current to be smaller,

with the result that the resistance seen by Vs will be larger.

The decreased output resistance results because the feedback works to keep Vo as constant as
possible. Thus if the current drawn from the amplifier output changes by Alo the change AVo
in Vo will be lower than it would have been if feedback were not present. Thus the output

resistance AVo / Alo will be lower than that of the open-loop amplifier.

Example Circuits:
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Current amplifiers:

The input signal in a current amplifier is essentially a current, and thus the signal source is most
conveniently represented by its Norton equivalent. The output quantity of interest is current;
hence the feedback network should sample the output current, just as a current meter measures
a current. The feedback signal should be in current form so that it may be mixed in shunt with
the source current. Thus the feedback topology most suitable for a current amplifier is the
current-mixing, current-sampling topology, illustrated in Fig. 3.55(a). Because of the parallel
(or shunt) connection at the input, and the series connection at the output, this feedback
topology is also known as shunt—series feedback. As will be shown, this topology not only
stabilizes the current gain but also results in a lower input resistance, and a higher output

resistance, both desirable properties for a current amplifier.

Basic ~
I R, current R,
amplifier

Yy

AAA

Feedback
network

(a)

(b)

Figure 3.55 (a) Block diagram of a feedback current amplifier. Here, the appropriate feedback

topology is the shunt—series. (b) Example of a feedback current amplifier.

The decrease in input resistance results because the feedback current Ir subtracts from the input
current Is , and thus a lower current enters the basic current amplifier. This in turn results in a

lower voltage at the amplifier input, that is, across the current source Is . It follows that the
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input resistance of the feedback current amplifier will be lower than that of the open-loop

amplifier.

The increase in output resistance is simply a result of the action of negative feedback in keeping
the value of lo as constant as possible. Thus if the voltage across Ry is changed, the resulting
change in Ip will be lower than it would have been without the feedback, which implies that

the output resistance is increased.
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Transconductance Amplifiers:

In transconductance amplifiers the input signal is a voltage and the output signal is a current.
It follows that the appropriate feedback topology is the voltage-mixing, current-sampling
topology, illustrated in Fig. 3.56(a). The presence of the series connection at both the input and

the output gives this feedback topology the alternative name series—series feedback.
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As in the case of the feedback voltage amplifier, the series connection at the input results in an
increased input resistance. The sampling of the output current results in an increased output
resistance. Thus the series—series feedback topology provides the transconductance amplifier

with the desirable properties of increased input and output resistances.

Examples of feedback transconductance-amplifiers are shown in Fig. 3.56 (b) and (c). The
circuit in Fig. 3.56(b) utilizes a differential amplifier A; followed by a CS stage Q>. The output
current Io is fed to Rr and to a series resistance Rr which develops a feedback voltage V. The
latter is applied to the positive input terminal of the differential amplifier A; . The subtraction
of Vefrom Vs is performed by the differencing action of the differential-amplifier input. At this
point we must check that Vrand Vs have the same polarity: A positive change in Vs will result
in a negative change at the gate of Q2 which in turn causes Io to increase. The increase in Io
results in a positive change in V¢, which is the same polarity assumed for the change in Vs

verifying that the feedback is negative.

The transconductance amplpifier in Fig.3.56(c) utilizes a CS amplifier in cascade with another
CS amplifier, The output current is fed to and to a series resistance Rr that developsa feedback

voltage Vr.

The latter is fed to the source of Q1, thus utilizing the input of Qito implement the subtraction:

Vi=Vs—Vr We see that V¢ has the same polarity as Vs and thus the feedback is negative.

R

s

Basic -~ e

V. , transconductance ) R,
' amplifier

O

Feedback n
network -

(a)
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Figure 3.56: (a) Block diagram of a feedback transconductance amplifier. Here, the appropriate
feedback topology is series—series. (b) Example of a feedback transconductance amplifier. (c)
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Tranresistance Amplifiers:

In transresistance amplifiers the input signal is current and the output signal is voltage. It
follows that the appropriate feedback topology is of the current-mixing, voltage sampling type,
shown in Fig. 3.57(a). The presence of the parallel ( or Shunt) connection at both the input and
the output makes this feedback topology also known as shunt—shunt feedback. The shunt
connection at the input causes the input resistance to be reduced. The shunt connection at the
output stabilizes the output voltage and thus causes the output resistance to be reduced. Thus,
the shunt—shunt topology equips the transresistance amplifier with the desirable attributes of a

low input and a low output resistance.

Three examples of feedback transresistance amplifiers are shown in Fig. 3.57(b), (c), and (d).
The circuit in Fig. 3.57(b) utilizes an op amp with a feedback resistance Rr that senses Vo and
provides a feedback current Ir that is subtracted from Is at the input node. To see that the
feedback is negative, let Is increase. The input current I; will increase, causing the voltage of
the negative input terminal to rise. In response, the output voltage will decrease, causing an

increase in Ir. Thus Irand Is have the same polarity, and the feedback is negative.
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The circuit in Fig. 3.57(c) utilizes a CG stage Qi cascaded with a CS stage Q.. A feedback
resistor Rr senses Vo and feeds a current Ir to the input node, where the subtraction from Is

takes place. We see that Ir and Is have the same polarity and thus the feedback is negative

Finally, the BJT feedback transresistance amplifier in Fig. 3.57(d) utilizes a CE stage Qi
cascaded with an emitter follower Q2 . A feedback resistor Rr senses Vo and feeds back a
current Ir to the input node, where it is subtracted from Is The reader is urged to show that the

feedback is indeed negative.

r
Basi A R:
e — AAA
I R, transresistance R, 21 YYV
amplifier T

- AA—

Feedback
network

(b)

(a)

Figure 3.57 (a) Block diagram of a feedback transresistance amplifier. Here, the appropriate

feedback topology is shunt—shunt. (b), (c), and (d) Examples of feedback transresistance

amplifiers
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4.1 Op-Amp DC and ACAmplifiers

4.1.1 Inverting AmplifierDefinition

Inverting amplifier is one in which the output is exactly 180° out of phase with respect to
input(i.e. if you apply a positive voltage, output will be negative). Output is an inverted(in
terms of phase) amplified version of input.

Circuit operation

The inverting amplifier using opamp is shown in the figure below
@ edrort sodPabo’ anzsméas

QTEEONT  B0AT;0DT® D0TT  AXR)EIFTT TFowoRIToS TVe3*Yer* AavdweN 1800
BerPYer* sNDHST  (0oTT P FRe3,3 Fpeddeesd o OIJITT, BePes
3, BNDIBT) . VeFYeF AWRPET Jdeead (o3BT S0ewad)) TOES
53, 30N .

RVBRFEF Boadyoredses

wHo0a ORY WYDT @I deon’ sodz;abo’ o VNS BT SeedJIUeNd
SeTog e 9T UFTI IBIAT SHTEIT

SelcEeal FCABRY UF 3§ SAHAET Sofqcedl HEHId 3H3eqe Sholedl a1l
IMET 1800 3MME  (FGUIST  JFE! WHhRICHS Tglecs] oF]  Hhodld, 33T
FHRTCHE ) . 3MICYC & Soqedl secges (Poredl HeHTd) wafdd 3Mgedt
3TE .

aféhe HATaXerT

opamp dTI&d Secgiedl HFCAPRR el HTcld er@ael 31Mg

Inverting Amplifier

Assuming the opamp is ideal and applying the concept of virtual short at the inputterminals
of opamp, the voltage at the inverting terminal is equal to non inverting terminal. The
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simplified circuit is shown in the figure below
Applying KCL at inverting node we get
(0-Vi)/Ri+(0-Vo)/Re= 0
By rearranging the terms we will get
Voltage gain Ay = Vo/ Vi=—-R¢R;.
Gain
Gain of inverting amplifier Ay=— R¢Ri.
4.1.2 Non Inverting amplifier

Definition

Non Inverting amplifier is one in which the output is in phase with respect to input(i.e. if you
apply a positive voltage, output will be positive ). Output is an Non inverted(in terms of
phase) amplified version of input.

Circuit operation

The inverting amplifier using opamp is shown in the figure below
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Non-Inverting Amplifier

v O—+

Assuming the opamp is ideal and applying the concept of virtual short, the voltageat the
inverting terminal is equal to non inverting terminal. Applying KCL at inverting node we get

(Vi-Vo)/Ra+(Vo-0)/R1 =0

By rearranging the terms we will get

Voltage gain Ay = Vo/ Vi = (1+ R#/R))

Gain

Gain of non inverting amplifier Ay= (1+ R¢/R;).

4.1.3 AC CHARACTERISTICS:

For small signal sinusoidal (AC) application one has to know the ac characteristics such as
frequency response and slew-rate.

Frequency Response:

The variation in operating frequency will cause variations in gain magnitude and its phase
angle. The manner in which the gain of the op-amp responds to different frequencies is
called the frequency response. Op-amp should have an infinite bandwidth Bw = (i.e) if its
open loop gain in 90dB with dc signal its gain should remain the same 90 dB through audio
and onto high radio frequency. The op-amp gain decreases (roll-off) at higher frequency what
reasons to decrease gain after a certain frequency reached. There must be a capacitive
component in the equivalent circuit of the op-amp. For an op-amp with only one break
(corner) frequency all the capacitors effects can be represented by a single capacitor C.
Below fig is a modified variation of the low frequency model with capacitor C at the o/p.

AC TDEOFENR:
gy AR J DT, B’ (AC) BB 8IS T3oh DI Je-TetFS[03T
MHEVZENTY), SPDHERYIeD .
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There is one pole due to RO C and one -20dB/decade. The open loop voltage gain of an op-
amp with only one corner frequency is obtained from above fig. f1 is the corner frequency or
the upper 3 dB frequency of the op-amp. The magnitude and phase angle of the open loop
volt gain are fu of frequency can be written as, The magnitude and phase angle
characteristics from eqn (29) and (30) 1. For frequency f<< f1 the magnitude of the gain is
20 log AOL in dB.

2. At frequency f = fl the gain in 3 dB down from the dc value of AOL in dB. This
frequency f1 is called corner frequency.

3. For £>> f1 the fain roll-off at the rate off -20dB/decade or -6dB/decade.

| T
20dB/decade

|A| dB —»

+— -20dB/decade

450

From the phase characteristics that the phase angle is zero at frequency f =0.

At the corner frequency f1 the phase angle is -450 (lagging and a infinite frequency the phase
angle is -900 . It shows that a maximum of 900 phase change can occur in an op-amp with a
single capacitor C. Zero frequency is taken as te decade below the corner frequency and
infinite frequency is one decade above the corner frequency.

3
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4.2 Filters

4.2.1.First order Low pass Butterworth Filter:
Butterworth filter is a type of filter whose frequency response is flat over the pass band
region. Low-pass filter (LPF) provides a constant output from DC up to a cutoff frequency
f(H) and rejects all signals above that frequency.

The first order low pass butter worth filter is realized by R-C circuit used along with an
op-amp, used in the non inverting configuration.

The circuit diagram is shown in Fig. This also called one pole low pass butter worth
filter.

BB 8BFT° e T VBT O T
QVOTSE DO 00T Dedad T 8NR) BT BT )3g0Doly Doz mzsoac
B3B3 Ded IDBeINT. BBD-@o VT® (LPF) DC 0B BeFess’ eI36
f(H) SO J0ze8 BerPer o) BNDIT P 8 8I3cI3,08 BES QU
R03e3NnY) 30H,0DI3 .

SedL  &BF0° BRD T g d)’ae)éd DO0° @ﬁ.& R-C ﬁafaémf
QOB op-amp W3 WYIUHBT, AT VI LFon’ OB em{)})ﬁdeéa‘ﬁebm
QYRBTMHST .

RERFEF TeodZ B SredTUNT . QB word Fpeer e @oxf 57

d)’ae)éd DV D0Te BBWTIT .

YYH ST oY I Fe3ad freex:
ge3add fheeX & fhectar & YR A SO dRaRdr Sfadeg 99 &85 &He
UE g, WI-urg fheed (LPF) DC 9NsT He3fih fhardd £(H) 9¥d &R
3M3TYC YTl &Ll 0T car frarddialior @ fRastel ArhRar.
JUH ST M-UF g Y fheey, AlT-SoIcgicdl Pl hIRQUTHEY
JIOREAT SAUMAT 3TT-TFgHg ITIRedAT ST R-C FfhegdR olalid Id.
gfhe Ene 3SR #7EY gAfdem Mg, ITem ad 9T off 99 §eX gy
ftheex 38T FgoTdrd .
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Fig.4.1 First order low pass butterworth filter

Analysis of the Filter Circuit: The impedance of the capacitor C is —j Xc where Xc is the
capacitive reactance given by

By the potential divider rule, the voltage at the non inverting input terminal A which is the
voltage across capacitor C is given by,

e . |
VA - —Iz—-—j—c)(—c.vin (1)
“i(zzrc)
2rfC -
V., = s V. = . V.
A - 1 in 21tfRC—J Vm
I\3%tc
e Vin
~,_ 2nfRC
]
. 1 1
- = = and - =
) j ] )
v.
V. = -
A = T+j2xfRC o (8)
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As the op-amp is in the non inverting configuration,

R
v, = (1 + RT*‘)VA ~ . (3)

V, = (l + -R‘) Yin

R, )(1 +J2nfRC)
..Y;!.’. - _._‘..éz_..__. - (4)
™ o (_f..
J T
Ay = (l + %—5)—-: gain of filter in pass band O 1)
1
by = 5 nIR 5 Bigh cut off frequency of filter e (6)
f = operating frequency
Yo
Vin

is the transfer function of the filter and can be expressed in the polar V in — form as,

Vo .

Vo

Yol .

’V;‘:‘, . v (7)
b = ~ .' " _f,
¢ tan (f”) ... (8)
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The phase angle @ is in degrees. The equation (7) describes the behavior of the low pass

filter.
is the transfer function of the filter and can be expressed in the polar V in — form as,

The phase angle @ is in degrees. The equation (7) describes the behavior of the low pass filter.

1. At very low frequencies, f < fy

R . .
vin! = A; ie. constant
2. At f = fH’
' Pﬁ’-[ = OB - 0.707 Az i.e. 3 dB down to the level of A
Vinl \/i . : g "
3. At f > f,
Vo
[Vl < ,

Thus, for the range of frequencies, 0 < f < fH, the gain is almost constant equal to fH which
is high cut off frequency. At f = fH, gain reduces to 0.707 AF i.e. 3 dB down from AF.

And as the frequency increases than fH, the gain decreases at a rate of 20dB/decade. The rate
20 dB/decade means decrease of 20 dB in gain per 10 times change in frequency.

The frequency fH is called cut off frequency, break frequency, — 3dB frequency or corner
frequency. The frequency response is shown in the Fig..

Voltage gain
 }
A rate of decrease 20 dB/decade
0.707 Ag —» i.e. Slope - 20 dB/decade
(3 dB down)
Pass
bend —»1é— Stop band —»-
» frequency
0 fy

Fig.4.2 Frequency responce

The rate of decrease in gain is 20 dB/decade i.e. the decrease can be indicated by a negative
slope in the frequency response, as —20 dB/decade.

146



MODULE 4

The design steps for the first order low pass Butterworth filter are
1) Choose the cut off frequency, fH.

2) Choose the capacitance C usually between 0.01 and 1 pF. Generally, it is selected as 1 uF
or less than that. For better performance, Mylar or tantalum capacitors are selected.

3) Now, for the RC circuit,

(o= L
H 2nRC

Hence, as fH and C are known, calculate the value of R.
4) The resistances Rfand Rican be selected depending on the required gain in the pass band.

Frequency Scaling: Once the filter is designed, sometimes, it is necessary to change the
value of cut-off frequency fH. The method used to change the original cut-off frequency fH
to a new cut-off frequency fH1 is called as frequency scaling. To achieve such a frequency
scaling, the standard value capacitor C is selected first. The required cut-off frequency can be
achieved by calculating corresponding value of resistance R. But to achieve frequency
scaling a potentiometer is used as shown in Fig. 2.75. Thus, the resistance R is generally a
potentiometer with which required cut-off frequency fH can be adjusted and changed later on
if required.

4.2.2 First Order High Pass Butterworth Filter:

A high pass filter is a circuit that attenuates all the signals below a specified cut off frequency
denoted as fL.. Thus, a high pass filter performs the opposite function to that of low pass
filter. Hence, the First Order High Pass Butterworth Filter circuit can be obtained by
interchanging frequency determining resistances and capacitors in low pass filter
circuit.
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Fig.4.3 First order low pass butterworth filter

The first order high pass filter can be obtained by interchanging the elements R and C in a
first order low pass filter circuit. The Fig4.3 shows the first order high pass Butterworth
filter. It can be observed that as compared to first order low pass filter (Fig. 2.74), the
positions of R and C are changed in the high pass circuit shown in Fig.4.3.

The frequency at which the gain is 0.707 times the gain of filter in pass band is called as low
cut off frequency, and denoted as fL. So, all the frequencies greater than fL is allowed to pass
but the maximum frequency which is allowed to pass is determined by the closed loop
bandwidth of the op—amp used.

Analysis of the Filter Circuit:
The impedance of the capacitor is

—ixc=—j(2—u‘f—c)

where f is the input i.e. operating frequency. By the voltage divider rule, the potential of the
non inverting terminal of the op—amp is

148



MODULE 4

—

R
Vo = Vol i)
Va = Vi B
-jiX . + 1
] . C(—ch )
1 : :
-] = ), we can write,
£ 3 _ .3
-jXc Xc 1
2nfC
=j2nfC

Substituting in the above expression of VA,

()
Va = Vi L
(_;R_)H
\ JXc
- - v J2nfRC
Va = Vi 1 +j2afRC]

This can be represented as

i)

ki 3
l+_|(?lj

|

= low cut off frequency

Va = Vg

1

where TARC

f[_=

Now, for the op-amp in non-inverting configuration,
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Vo = AF vA ;
Voltage at the non inverting input

. where Va

and Ag

(1 + %1) = gain of op—amp in pass band
!

%)
V, = AV ML) )

- (f
”’(?E)

_j(;ff_L_)._ ... (5)

This is the required expression for the transfer function of the filter. For the frequency
response, we require the magnitude of the transfer function which is given by,

| Vo | At (Fff)_ ... (6)

The equation (6) describes the behavior of the high pass filter.

1) At low frequencies, i.e. f < f,;

V,
v:’ < Ap
2) At f = fL’
%,-0—» = 0.707 A; ie. 3 dB down from the level of Ay

f
3) At f > f;, ie. high frequencies, 1 can be neglected as compared to (EJ from .

denominator.
Vo

= Ap i.e. constant
Vi
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Vokage gain

A yd

0.707 Ay f—m il
(3 @B down)
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Siope +20 dB/decade

e frequency
0 L

Fig.4.4 Frequency responce

Thus, the circuit acts as high pass filter with a pass band gain as Af. For the frequencies, f <
fL, the gain increases till f = fL at a rate of + 20 dB/decade. Hence, the slope of the frequency
response in stop band is + 20 dB/decade for first order high pass filter. The frequency
response is shown in the Fig. 2.80. Note: As high pass filter is basically a low pass filter
circuit with positions of R and C interchanged, the design steps and the frequency scaling
method discussed earlier for low pass filter is equally applicable to the first order high pass
Butterworth filter.

4.2.3 Band Pass Filter:

A Band Pass Filter Circuit designed to pass signals only in a certain band of frequencies
while rejecting all signals outside this band.

There are basically two types of Band Pass Filter Circuit,

1. Wide band pass filter

2. Narrow band pass filter

A Band Pass Filter Circuit is defined as a wide band pass if its figure of merit or quality
factor Q < 10. While there is no firm dividing line between the two, if Q > 10, the filter is a
narrow Band Pass Filter Circuit. Hence Q is a measure of selectivity meaning the higher the
value of Q, the more selective is the filter, or the narrower is the band width.

The relationship between Q, 3 db band width and the centre frequency {3 is given by
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For the wide Band Pass Filter Circuit, the centre frequency can be defined as

fo= an Ji

where fH = high cutoff frequency, fL = low cutoff frequency of the wide bandpass Wide
Bandpass Filter:

A wide bandpass filter can be formed by simply cascading high-pass and low-pass sections
and is generally the choice for simplicity of design and performance though such a circuit
can be realized by a number of possible circuits.
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To form a & 20 db/ decade bandpass filter, a first-order high-pass and a first-order low-pass
sections are cascaded; It means that, the order of the bandpass filter is governed by the order
of the high-pass and low-pass filters it consists of.
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Fig.4.5 wide band pass filter
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4.2.4 .Narrow BandPass Filter:

A narrow bandpass filter employing multiple feedback is depicted in figure. This filter

employs only one op-amp, as shown in the figure. In comparison to all the filters discussed

so far, this filter has some unique features that are given below.

1. It has two feedback paths, and this is the reason that it is called a multiple-feedback filter.
2. The op-amp is used in the inverting mode.
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4.2.5 Band Reject Filter:

In this Band Reject Filter Circuit, frequencies are attenuated in the stop band and passed
outside it, Types of Band Reject Filter Circuit,

1. Narrow band reject filter

2. Wide band reject filter

Narrow band reject filter:

The narrow band reject filter is also called the notch filter. Because of its higher Q which is
greater than 10, the bandwidth of the narrow band reject filter is much smaller than that of
the wide band reject filter.

The band reject filter is also called a band stop or band elimination filter because it eliminates
a certain band of frequencies.

The narrow band reject filter, often called the notch filter, is commonly used for the
attenuation of a single frequency. For example, it may be necessary to attenuate 60 Hz or 400
Hz noise or hum signals in a circuit. The most commonly used notch filter is the Twin T
network, shown in Fig. 15.21(a), which is a passive filter composed of two T shaped
networks.

31%g 93 Rotwe fheex:

3% 935 Rode fhecteml dig fheey @ Fguidid. 10 9&TT STed 3i¥cled
T 3T oFds, 3%e d5 Rolde fhoetl dsfasy args ds Rolde fheexdetm
gad wgle 37T

d5 Roge hectel o8 T fhar a8 tfafdes fheex ¢@er FoTdid ®ROT o
fherdedll=ll 3XTdeh &5 higel clehd.

3% d5 Rolge fhex, ST sU@er sl fheeX FgUIdd, IHAGIT: THMM
IRARATAT &UTAATST arRel . 3aeeony, IfheAsd 60 Hz fRar 400 Hz
st fhal hum IS Al IO IMARIS I ekl . HATA AHAIIO! AR
SR Atg fheey ¢faed & Acasw 38, o ”T 15.21(a) ALY gr@dd 3R,
S ST T 3R] Acddhe dddold Tah AT fheet 317

300G 239,06 30K, DR S0

3008 woorF 3TJOWBT JVT* O ¥ JVO° dode ITohUHIT. ©BT
BIS 0 10 303 BIVITOOT, ~yTee WOE OB SVTR W0FEAIE I,
2,00 885, 30TN03 UB,TNG .

W0t OWE VOT VR WoW TH WFD W0 AODIES VT doWw

30TIHBT ©B0BT VW IVEF, BTIEINY W00 O, INWTIDST .

155



MODULE 4

Slelaprin) mﬁsoa‘ 0edz° de0° @RS& mmr‘\%mﬁ JF¥ O 0° Qo BTahOrHBT,
QBR, TV DN OB BIBEIT FLeITW WHSUNDIBT . GVTIBTHRTT, JERFEFRO
60 Hz oBId 400 Hz 3 OFDI T IQONYS) DIFORIDIHD
eﬁriézsmﬁzoai)do. ®ed) mmr‘\%mﬁ WP ¥ QT Y 8 JeFT3E 8N,
3, B 15.21(a) IQ FeedIUNG, RWWH VD T 8308 IeFSE RIS

2PRoBIT AQ b T &8NT.
R l:

«ACAA -
|_

- 2¢ R

(a) (b)

;H fe }L FrequenC;
(c)
Fig.4.6 a) Twin-T Notch Filter b)Active Notch Filter c)Frequency response

One T network is made up of two resistors and a capacitor, while the other is made of two
capacitors and a resistor. The frequency at which maximum attenuation occurs is called the
notch-out frequency, given by

TS (15.50)
27 RC

One disadvantage of the passive twin T network is that it has a relatively low figure of merit,
Q. As discussed earlier, the higher the value of Q, the more selective is the filter. Therefore,
to increase the Q of the twin T network significantly, it should be used with a voltage
follower, as shown in Fig. 15.21(b). Figure 15.21(c) shows the frequency response of a notch
filter. The Notch filters are used in communications, biomedical instruments, etc. where the
elimination of certain frequencies is necessary.
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Wide band Reject Filter:

Figure (a) shows wide band reject filter using a low pass filter, a high pass filter and a
summing amplifier. For a proper band reject response, the low cutoff frequency fL of the
high pass filter must be larger than the high cutoff frequency fH of the low pass filter.

Also, the pass band gain of both high pass and low pass sections must be equal.
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Fig.4.7 wide band reject filter using HPF ,LPF and summing amplifier

4.3. 555 Timer and its applications
4.3.1.INTRODUCTION

It is basically a monolithic timing circuit that produces accurate and highly
stable time delays or oscillation. When compared to the applications of an op-
amp in the same areas, the 555IC is also equally reliable and is cheap in cost.
Apart from its applications as a monostable multivibrator and astable
multivibrator, a 555 timer can also be used in dc-dc converters, digital logic
probes, waveform generators, analog frequency meters and tachometers,
temperature measurement and control devices, voltage regulators etc. The timer
IC is setup to work in either of the two modes — one-shot or monostabl or as a
free-running or astable multivibrator.The SE 555 can be used for temperature
ranges between — 55°C to 125° . The NE 555 can be used for a temperature

range between 0° to 70°C.
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4.3.2.The important features of the 555 timer are :

It operates from a wide range of power supplies ranging from + 5 Volts to + 18
Volts supply voltage.

Sinking or sourcing 200 mA of load current.
The external components should be selected properly so that the timing intervals

can be made into several minutes along with the frequencies exceeding several
hundred kilo hertz.

The output of a 555 timer can drive a transistor-transistor logic (TTL) due toits
high current output.

It has a temperature stability of 50 parts per million (ppm) per degree Celsius
change in temperature, or equivalently 0.005 %/ °C.

The duty cycle of the timer is adjustable.

The maximum power dissipation per package is 600 mW and its trigger and reset
inputs has logic compatibility. More features are listed in the datasheet.

IC Pin Configuration

Ground | 4 8 |+*Vee
Trigger| o 7 | Discharge
999
Output | 3 g | Ihreshold
Control
Reset| 4 5 Voltage

Following is a brief description on the function associated with each of its pins

Ground (Pin 1 of &8-pin and Pin 3 of 14-pin package): Used a
reference with which each of the voltage is measured.

Trigger (Pin 2 of 8-pin and Pin 4 of 14-pin package): This
pin is used to provide trigger to the circuit when the device will be configured to
behave like a monostable multivibrator. As evident from Figure 2, it is seen that
this pin is connected as an input to the comparator C2 which compares it with 173
VCC, fed as an input to its other terminal. As a result, when the user-provided
negative pulse exceeds 13 VCC (obtained from the resistive network), the output
of this comparator goes high. This causes the output Q of the SR flip-flop to

become zero, thereby pulling its Qpin high which makes the output of the inverter
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to go low, thereby resulting in a high output from the IC.

Output (Pin 3 of &-pin and Pin 5 of 14-pin package): Thisis
the pin at which the output of the IC can be obtained. 555 timer IC provides two
options for the user to load this pin viz., (i) Normally on load configuration where
the load is connected between the Supply and the Output pins and (i) Normally off
load configuration where the load is connected between the Ground and the Output
pins.

Reset (Pin 4 of &pin and Pin 6 of 14-pin  package):This
pin can be used by the user to reset the IC as the user-providednegative going pulse
on this pin switches OFF the associated transistor. Thisis because, a logic low on
this pin causes the output of the flip-flop to go high, turning ON the discharge
transistor. However, usually this pin will be connected to +VCC when not in use so
as to avoid false triggering.

Control Voltage (Pin 5 of 8-pin and Pin 9 of 14-pin package): This
pin is used to control the levels of threshold as well as triggering. In addition, this
pin can be used to control the pulse width of the output waveform as the voltage
applied at this pin decides the condition at which the output of the comparator (C1)
switches its state. The same regulation inthe output waveform can be even
experienced by connectinga potentiometer to this pin. Next, it is to be noted
that when this pin is tobe left unused, it is to be bypassed to ground via 0.01 pF
capacitor in order to get rid of noise issue.

Threshold (Pin 6 of &-pin and Pin 10 of 14-pin package): This
pin is connected to the positive terminal of the comparator C1 which compares the
applied voltage with 23 VCC. Next, when the user provided voltage exceeds this
reference level of 23 VCC, the output of C 1 goes high,and thus the flip -flop's
output (Q) will be set . Due to this , the complement of its output (Q) will go low,
resulting in a high output from the inverter, which will be nothing but the output of
the IC.

Discharge (Pin 7 of &8-pin and Pin 12 of 14-pin package): This
pin is connected to the collector terminal of the internal transistor in 555 timer
IC. Generally, a capacitor will be connected between this terminal and ground.
This capacitor discharges through the transistor whenit saturates, a phenomenon
experienced when the output of comparator C1 sets the flip-flop indicating that the
threshold voltage has increased in comparison with that of the control voltage. On
the other hand, if the negative-going trigger pulse exceeds 13 VCC, then the output
of the flip- flop goes low as the lower comparator's output will go high. This
inturn
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turns OFF the transistor during which the capacitor attached to its terminalstarts to
charge at a rate decided by the external resistor and the capacitor.

e Supply (Pin 8 of 8-pin and Pin 13 of 14-pin package): This pin is used to provide a
voltage within the range of +5V to +18V wrt ground.

555 Timer Basics

o The 555 timer combines a relaxation oscillator, two comparators, an
R-S flip-flop, and a discharge capacitor.

i

o As shown in the figure, two transistors T1 and T2 are cross coupled.
The collector of transistor T1 drives the base of transistor T2 through the
resistor Rb2. The collector of transistor T2 drives the base of transistor T1
through resistor Rbl. When one of the transistor is in the saturated state, the
other transistor will be in the cut-off state. If we consider the transistor T1 to be
saturated, then the collector voltage will be almost zero. Thus there will be a
zero base drive for transistor T2 and will go into cut-off state

S-R Flip Flop

+\

oc

T

and its collector voltage approaches +Vcc. This voltage is applied to the
base of T1 and thus will keep it in saturation.

S-R Hip Flop Symbol

S-R
Flip Flop
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° Now, if we consider the transistor T1 to be in the cut-off state, then
the collector voltage of T1 will be equal to +Vcc. This voltage will drive the
base of the transistor T2 to saturation. Thus, the saturated collector output of
transistor T2 will be almost zero. This value when fedback to the base of the
transistor T1 will drive 1t to cut-off. Thus, the saturation and cut-off value of
anyone of the transistors decides the high and low value of Q and its
compliment. By adding more components to the circuit, an R-S flip-flop is
obtained. R-S flip-flop is a circuit that can set the Q output to high orreset
it low. Incidentally, a complementary (opposite) output Q is available from the
collector of the other transistor. The schematic symbol for a S-R flip flop is also
shown above. The circuit latches in either the Q state or its complimentary state.
A high value of S input sets the value of Q to go high. A high value of R input
resets the value of Q to low. Output Q remains in a given state until it is
triggered into the opposite state.
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R /
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Basic Timing Concept

o From the figure above, assuming the output of the S-R flip flop, Q to
be high. This high value is passed on to the base of the transistor, and the
transistor gets saturated, thus producing a zero voltage at the collector. The
capacitor voltage is clamped at ground, that is, the capacitor C is shorted and
cannot charge.

o The inverting input of the comparator is fed with a control voltage,
and the non-inverting input is fed with a threshold voltage. With R-S flip flop
set, the saturated transistor holds the threshold voltage at zero. The control
voltage, however, is fixed at 2/3 VCC, that is, at 10 volts, because of the
voltage divider.

o Suppose that a high voltage is applied to the R input. This resets the
flip- flop R-Output Q goes low and the transistor is cut-off. Capacitor C is now
free to charge. As this capacitor C charges, the threshold voltage rises.
Eventually, the threshold voltage becomes slightly greater than (+ 10 V). The
output of the comparator then goes high, forcing the R S flip-flop to set. The
high Q output saturates the transistor, and this quickly discharges the capacitor.
An exponential rise is across the capacitor C, and a positive going pulse appears
at the output Q. Thus capacitor voltage VC is exponential while the output is
rectangular. This is shown in the figure above.
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555 IC Timer Block Diagram
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The block diagram of a 555 timer is shown in the above figure. A 555 timer has
two comparators, which are basically 2 op-amps), an R-S flip-flop, two
transistors and a resistive network.

7 Resistive network consists of three equal resistors and acts as a voltage
divider.

1 Comparator 1 compares threshold voltage with a reference voltage + 2/3
VCCvolts.

1 Comparator 2 compares the trigger voltage with a reference voltage + 1/3
VCCvolts.

Output of both the comparators is supplied to the flip-flop. Flip-flop assumes its
state according to the output of the two comparators. One of the two transistors
is a discharge transistor of which collector is connected to pin 7. This transistor
saturates or cuts-off according to the output state of the flip-flop. The saturated
transistor provides a discharge path to a capacitor connected externally. Base of
another transistor is connected to a reset terminal. A pulse applied to this
terminal resets the whole timer irrespective of any input.
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Working Principle

The internal resistors act as a voltage divider network, providing (2/3)Vcc at the
non-inverting terminal of the upper comparator and (1/3)Vcc at the inverting
terminal of the lower comparator. In most applications, the control input is not
used, so that the control voltage equals +(2/3) VCC. Upper comparator has a
threshold input (pin 6) and a control input (pin 5). Output of the upper
comparator is applied to set (S) input of the flip-flop. Whenever the threshold
voltage exceeds the control voltage, the upper comparator will set the flip-flop
and its output is high. 4 high output from the flip-flop when given to the base of
the discharge transistor saturates it and thus discharges the transistor that is
connected externally to the discharge pin 7. The complementary signal out of
the flip-flop goes to pin 3, the output. The output available at pin 3 is low.
These conditions will prevail until lower comparator triggers the flip-flop. Even
if the voltage at the threshold input falls below (2/3) VCC, that is upper
comparator cannot cause the flip-flop to change again. It means that the upper
comparator can only force the flip-flop’s output high.

To change the output of flip-flop to low, the voltage at the trigger input must
fall below + (1/3) Vce. When this occurs, lower comparator triggers the flip-
flop, forcing its output low. The low output from the flip-flop turns the
discharge transistor off and forces the power amplifier to output a high. These
conditions will continue independent of the voltage on the trigger input. Lower
comparator can only cause the flip-flop to output low.

From the above discussion it is concluded that for the having low output from
the timer 555, the voltage on the threshold input must exceed the control
voltage or

+ (2/3) VCC. This also turns the discharge transistor on. To force the output
from the timer high, the voltage on the trigger input must drop below +(1/3)

168



MODULE 4

VCC. This turns the discharge transistor off.

A voltage may be applied to the control input to change the levels at which the
switching occurs. When not in use, a 0.01 nano Farad capacitor should be
connected between pin 5 and ground to prevent noise coupled onto this pin
from causing false triggering.

Connecting the reset (pin 4) to a logic low will place a high on the output of
flip- flop. The discharge transistor will go on and the power amplifier will
output a low.

This condition will continue until reset is taken high. This allows
synchronizationor resetting of the circuit’s operation. When not in use, reset
should be tied to

+VCC.
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4.4.Monostable multivibrator using 555 Timer

= 4 8
3 o
7 Cutput
Fa é

Voo

555

3%

001k

The pins 2 and 6 are connected and hence there is no need for an external
trigger pulse. It will self trigger and act as a free running multivibrator. The rest
of the connections are as follows: pin 8 is connected to supply voltage (VCC).
Pin 3 is the output terminal and hence the output is available at this pin. Pin 4 is
the external reset pin. A momentary low on this pin will reset the timer. Hence
when not in use, pin 4 is usually tied to VCC.

The control voltage applied at pin 5 will change the threshold voltage level.
But for normal use, pin 5 is connected to ground via a capacitor (usually
0.01uF), so the external noise from the terminal is filtered out. Pin 1 is ground
terminal. The timing circuit that determines the width of the output pulse is
made up of R1, R2 and C.
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4.4.1 .Operation
The following schematic depicts the internal circuit of the IC 555 operating

inastable mode. The RC timing circuit incorporates R1, R2 and C.

Q Vee
L . - Discharge Path

p—

SK ——— Charging Path

Comparator 1
g -
} R

1 3
o - {> o)
i !

e Comparator 2 Output

i

T
Q

The detailed operation can be explained as follows. Initially, the flip-flop is
RESET. This will allow the discharge transistor to go to saturation. The
capacitor C, which is connected to the open collector (drain in case of CMOS)
of the transistor, is provided with a discharge path. Hence the capacitor
discharges completely and the voltage across it is 0. The output at pin 3 is low

(0).

When a negative going trigger pulse input is applied to the trigger comparator
(comparator 2), it is compared with a reference voltage of 1/3 VCC. The output
remains low until the trigger input is greater than the reference voltage. The
moment trigger voltage goes below 1/3 VCC, the output of comparator goes
high and this will SET the flip-flop. Hence the output at pin 3 will become high.

At the same time, the discharge transistor is turned OFF and the capacitor C
will begin to charge and the voltage across it rises exponentially. This is
nothing but the threshold voltage at pin 6. This is given to the comparator 1
along with a
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reference voltage of 2/3 VCC. The output at pin 3 will remain HIGH until the
voltage across the capacitor reaches 2/3 VCC.

The instance at which the threshold voltage (which is nothing but the voltage
across the capacitor) becomes more than the reference voltage, the output of the
comparator 1 goes high. This will RESET the flip-flop and hence the output at
pin 3 will fall to low (logic 0) i.e. the output returns to its stable state. As the
output is low, the discharge transistor is driven to saturation and the capacitor
will completely discharge.

Hence it can be noted that the output at pin 3 is low at start, when the trigger
becomes less than 1/3 VCC the output at pin 3 goes high and when the
threshold voltage is greater than 2/3 VCC the output becomes low until the
occurrence of next trigger pulse. A rectangular pulse is produced at the output.
The time for which the output stays high or the width of the rectangular pulse is
controlled by the timing circuit i.e. the charging time of the capacitor which
depends on the time constant RC.
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Pulse Width Derivation

We know that the voltage across the capacitor C rises exponentially. Hence the
equation for the capacitor voltage VC can be written as

VC=VCC (1 —e-t/RC)
When the capacitor voltage is 2/3 VCC, then2/3 VCC = VCC (1 — e-t/RC)
2/3=1-e-t/RCe-t/RC=1/3
—t/RC=1n(1/3)
—t/RC=-1.098t=1.098 RC

~t=1.1 RC
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The pulse width of the output rectangular pulse is W = 1.1 RC. The waveforms

of the monostable operation are shown below.

Yero
Trigger
1/3 Vee
23 Voo

: :

Capacitor Voltage

: |+ Vee

—
Pulse Width

{ Output Voltage

|~|— Toxy —=

Applications of Monostable Multivibrator

N Frequency Divider

N Pulse Width Modulation
] Linear Ramp Generator
[l Missing Pulse Detector

4.4.2. Astable Multivibrator using 555 Timer IC

Astable Multivibrator mode of 555 timer IC is also called Free running or self-
triggering mode. Unlike Monostable Multivibrator mode it doesn’t have any
stable state, it has two quasi stable state (HIGH and LOW). No external
triggeringis required in Astable mode, it automatically interchange its two states
on a particular interval, hence generates a rectangular waveform. This time
duration of HIGH and LOW output has been determined by the external
resistors (R1 and R2)and a capacitor(C1).
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BYS DR VD VST, B, BAIREFIAW  (R1 DR R2) DR
BT (C1) AGEODIT.

555 TR IC TIT 3Tl HecIcgiisied AISal T IH9T fohar Aew-fearier Al e
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Operation of Astable Multivibrator mode of 555 timer IC:

A,
Power PIN 8
R1 R
Sk Upper Comparator Q1
e,
Control PIN 5
o - RS FLIP-FLOP
23Vee —
Discharge PIN 7 " @ i
R2 [] R [:
Sk s Q
U2
13Vee T Reset Pin 4 Output PIN 3
Threshold PIN +
Trigger PIN 2 -

Lower Comparator

Ground 1

. When initially power is turned ON, Trigger Pin voltage is below Vcc/3,
that makes the lower comparator output HIGH and SETS the flip flop and
output of the 555 chip is HIGH.

. This makes the transistor Q1 OFF, because Qbar, Q’=0 is directly applied
to baseof transistor. As the transistor is OFF, capacitor C1 starts charging and
when it gets charged to a voltage above than Vcc/3, then Lower comparator
output becomes LOW (Upper comparator is also at LOW) and Flip flop output
remains the same as previous (555 output remains HIGH).

. Now when capacitor charging gets to voltage above than 2/3Vcc, then the
voltage of non-inverting end (Threshold PIN 6) becomes higher than the

inverting end of the comparator. This makes Upper comparator output HIGH
and RESETs the Flip flop, output of 555 chip becomes LOW.

. As soon as the output of 555 get LOW means Q’=1, then transistor QI
becomes ON and short the capacitor C1 to the Ground. So the capacitor C1
starts discharging to the ground through the Discharge PIN 7 and resistor R2.

. As capacitor voltage get down below the 2/3 Vcc, upper comparator
output becomes LOW, now SR Flip flop remains in the previous state as both
thecomparators are LOW.

. While discharging, when capacitor voltage gets down below Vcc/3, this
makes the Lower comparator output HIGH (upper comparator remain LOW)
and Sets the flip flop again and 555 output becomes HIGH.
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Transistor Q1 becomes OFF and again capacitor C1 starts charging.
©3802300 TS0 8 eBnen, L3i0° dF Fpeed eeF Vee/3 Nod IYNDHST, d 58D

Beeddah Bermes o Bud) RT3 D) I&° Hed' O, BRODDBT D) 555
WS BeFrF)es wHIZINDIT.

QD) YA IO Q1 C.‘)RS.& 85 DRD3T, OF0WT Qbar, Q'=0 C.‘)RS.& Sedwen
YA TOS eI R,ATOMBT . 39 TO° 6857 SNDIT00T, Bwede30® C1
IFE BN TYToYWBT DR W Vee/3 NodB T3S Fpedd et e3oese
sz, So33 BBD TwedBodh Berer 38D 63T (DedI BeedBodw
S8 BBDANE) DB I d' VBerPer HodIoZodbe WBHIB (555
BeFQ)er med) eved3T) .

B BDedw0’ edFont 2/3Vec Nod TS Fpeddeest womeri, s edcont
Vs wo3d FpedeF (Fpek O 6) Nod BIINDIST

BreOB0R o3BT SHNDID. D DedI Beeddah BerPe o ),
FeBE DR T PD' ©F DDBRRBDBF, 555 VBN BerPer QD
833 .

555 O Bermer 3@Dobed 33 0'=1 2088, [033 B[O 01 &FF
83T DB FweAWO® C1 oF Jvd, BN DST. 8rOT B3k
Cl QTeff A 7 DD TAJD® R2 Dwews I, BJ9fc  eBdw
BTODDIT .

358307 FpedeeF 2/3 Vee Nod BIYNVT0Z, DedI Beeddadh Berm)es
30D edEd, BN SR OF Fed HoOI Q3O LLIDT ©30TT  OTBR
BeedBND BBD .

BTeFe ed@ent, BTV FpedJeeF Vec/3 Nod  BBDaewmen, A
30D Beeddadh BrPer o Td) DDIT  (DedI Beed3ady  BBD
QHBF) DR P PP O DI BeoDDZZ DI 555 Veresr
RITNIT .

BYATOY 01 &8x odd D) DI BTATT Cl w3eFE B

T9C0DIS .
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FraTciell dla dle] oy, fEIR e Sgleds Vee/3 =T Wiell 318al, SATHS 3N
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182



MODULE 4

Charging
Capacitor through R and B2
Voltage
Discharging
through B2
23 Ve
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H H

Ve !
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This charging and discharging of capacitor continues and a rectangular
oscillating output wave for is generated. While capacitor is getting charge the
output of 555 is HIGH, and while capacitor is getting discharge output will be
LOW. So this is called Astable mode because none of the state is stable and
555 automatically interchange its state from HIGH to LOW and LOW to HIGH,
so it is called Free running Multivibrator.

— | p—

Now the OUTPUT HIGH and OUTPUT LOW duration, is determined by
the Resistors R1 & R2 and capacitor C1. This can be calculated using below
formulas:

Time High (Seconds) T1 = 0.693 * (R1+R2) * C1Time Low (Seconds) T2 =
0.693 * R2 * C1

Time Period T = Time High + Time Low = 0.693 * (R1+2*R2) * C1
Freqeuncy f = 1/Time Period = 1/ 0.693 * (R1+2*R2) * Cl1 = 1.44 /
(R1+2*R2) * C1

Duty Cycle: Duty cycle is the ratio of time for which the output is HIGH to the
totaltime.

Duty cycle %: (Time HIGH/ Total time) * 100 = (T1/T) * 100 = (R1+R2)/
(R1+2*R2)

*100
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POWER SEMICONDUCTOR DEVICES AND COMMUTATION CIRCUITS

Introduction to power electronics:

Power Electronics is a field which combines Power (electric power), Electronics and
Control systems. Power engineering deals with the static and rotating power equipment for
the generation, transmission and distribution of electric power. Electronics deals with the
study of solid state semiconductor power devices and circuits for Power conversion to meet
the desired control objectives (to control the output voltage and output power). Power
electronics may be defined as the subject of applications of solid state power
semiconductor devices (Thyristors) for the control and conversion of electric power. Power
electronics deals with the study and design of Thyristorised power controllers for variety of
application like Heat control, Light/Illumination control, Motor control - AC/DC motor
drives used in industries, High voltage power supplies, Vehicle propulsion systems, High
voltage direct current (HVDC) transmission.

BB0° 2J59, B, BB DSV 2eI5Y VY, 202D BT (IWyTF BB), eI VT, DR)
Aabodey FBINYRY FoodeeddDE ZeFmoNs. BT Bdodh vz d:, BTTe DR
ABoBEMN  JT D) ST G  evBBTenHeodt BJTF doBAehdor?
FBBODITH. 053 A, HR 0ot B WTDBT TS TIFINW @) WALIT daboS)ed
VZeBNIR, (Bewer Bpedeed P Bener IS AobodTen) Bpd;Ren IS
SOTBER TBRFes Wb FSBORDBE.ABYE Bdobh JohoBes D) BOSSeIrioN
3 A30h BT WTDOBE TBINY (BB E WD) w3,0biY J@obaeN BBO° eI, A,
O, DYVYATWRD.IIO’ 2eIFY, AT, D98 AD0ZHB0BD NG Oedod wdHBedTN
3,070,087 SS0° dohoZBnY Wb DB ITYRBReodT [ESBODSE.S,eF /
QDR B0edR)eedpge3oT° AANOB)EI - B;MeOBNH WFTIIHIT 0 / B Bee3oo®
3.3y et e T STTR.

Jia Selagifiad g Udh &9 3¢ of Ui} (Solfdgeh UlaY), Selacifaiard 3107 ahelel
foeecrd Th d. faggd il fega et A, dwor 3nfor faawor ffex
37O fohTad dsT 390 8TdTad. Sodciiaerd g Iod AHIhsael diel grerey 3o
TfheH dTat FTROT ATST 33-ATH STeod 0T 3fRee (313eYe Sglecst 10T 3m3eye
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et TG FRoarardl) qoi oid. die’ geldrelisiard fdegd ekl fasor 3nfor
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QiaR sheloRTdT 1T 31T fSemsasl gafda 3mg, wehrer / Usddel @I=or, Hex
fAI0T - SeaMAEY qraRer THT / SIAT Al 3188, 3T glocsl diel Ao, dg
YUNEsT YUTTel, 3= cglec ol A AT (TIEISIE) ThaUT.

qidY Solaeiard & Udh &1F 31§ of UidX (Solfdgeh UlaY), Solacifoalard 3107 shelel
faFera T oXd. faega Az fdegd ererdl fAfd, dwor 3nfor faawor iR
37foT e dsT 39T gTdTed. Sodcl=dd g Jod JHhsdel diel e 3o
HféheH Gla’ FUTEROT AIST T Sioad =0T 3RS (3M3eYC cglecst 0T H13eqe
el TG FRoArard)) qui oXd. Gle’ Seidreliolerd fdega erekr f=a=or 3nfor
FATRUTTETS! 8l I efell YHTehseFed AU (URIRESH) TIT 39197 v egrea
hel ST Aehdl. TTeR SoleFeI 1o §IC ShelofdREAT fAfaer JTqodenars! AaRECsss
qiay heloledT 3T 70T fSemsael Tafia 31e, Uil / Jsddd 9T, #ex
fAI0T - SeaMAEY qraRer THT / SIAT Al 3138, 3T @locsl diel Ao, dTg
YUTEsT JUTTel, 3T cglocol AT IaHT (TISEISIET) TehaUT,

Power Electronics refers to the process of controlling the flow of current and voltage and
converting it to a form that is suitable for user loads. The most desirable power electronic
system is one whose efficiency and reliability is 100%.

Take a look at the following block diagram. It shows the components of a Power Electronic
system and how they are interlinked.

DBF0F 2 IF, B3 BDI) Speter BOBRY ADOFES D) VST elperddnt
ReZE GB3, BOBIFADT BHDWR), RBDIT. €303 eTeghed IR
IRTOE BIY - 0B ©F0 BZE DB ITRFBES 100% SNTIVNR weEF
SeareI3BRy Feed. A BSC* 85, IB AT, FHBNYR) BeODIE ) VRN
Bert B0=,0 SoBF B0DS.
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qidR ST JdHT 3T calecordl Yag AT FIvarear yishayg Fefdid
HA IOT FTRBATIT ASHTET AT I HTeIT BIHALY TATART . TATd 35
QFAT SoIFCITeAch YOIl Udh SATAT HIAETHAT 0T fI2q@=Iadr 100% 378, @reirel
Selleh HTehell Ueh heTel. § TTaN Selercifeleh JOUTTOI Eceh JTIOT o il TehAhiRl Silselel

Electrical Electronic User
Power ¥ Power ® Electrical
Circuit Load
A
Control
Circuit

3Ted g g2fad.

Figure: 5.1. Block diagram of DC power supply

A power electronic system converts electrical energy from one form to another and ensures
the
following is achieved —

Maximum efficiency

Maximum reliability

Maximum availability

Minimum cost

Least weight

Small size

Applications of Power Electronics are classified into two types — Static Applications and
Drive

Applications.

Static Applications

This utilizes moving and/or rotating mechanical parts such as welding, heating, cooling,
and electro- plating and DC power.

DC Power Supply

200 ci)d)zsa“ ci)d)zsméai dédﬁaofm ci)d)zsa“ 330D wold TeBROB  QR0TF,
20B3EDIT DB BYNIIYNYRY, TOBUMHIT 20md ISBEDST -
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Figure: 5.2. Block diagram of DC power supply
Drive Applications

Drive applications have rotating parts such as motors. Examples include compressors,
pumps, conveyer belts and air conditioning systems.

Air Conditioning System

Power electronics is extensively used in air conditioners to control elements such as
compressors. A schematic diagram that shows how power electronics is used in air
conditioners is shown below.

35" ©QBeBPR
C_i)éac ©BeBFIH SReEFNEPOBHT SN WNNYRY, Be0HT.LVTITTEMW Sodeeds,
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aTdTeheleT JoTTel!
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HAISAT YA AT Fell ST, TR HISATRALY UiaT ST AFHAT ard HAT Fell
STl ¢ SAAVIRT Tk ToTerag (@TTT @rell geifder 3Te.

Source of power

Figure: 5.3. Block diagram of Air Conditioning System
Power electronic applications

Commercial applications Heating Systems Ventilating, Air Conditioners, Central
Refrigeration, Lighting, Computers and Office equipments, Uninterruptible Power Supplies
(UPS), Elevators, and Emergency Lamps

Domestic applications Cooking Equipments, Lighting, Heating, Air Conditioners,
Refrigerators & Freezers, Personal Computers, Entertainment Equipments, UPS

Industrial applications Pumps, compressors, blowers and fans Machine tools, arc
furnaces, induction furnaces, lighting control circuits, industrial lasers, induction heating,
welding equipments

Aerospace applications Space shuttle power supply systems, satellite power systems,
aircraft power systems.

Telecommunications Battery chargers, power supplies (DC and UPS), mobile cell phone
battery chargers

Transportation Traction control of electric vehicles, battery chargers for electric vehicles,
electric locomotives, street cars, trolley buses, automobile electronics including engine
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controls

Utility systems High voltage DC transmission (HVDC), static VAR compensation (SVC),
Alternative energy sources (wind, photovoltaic), fuel cells, energy storage systems, induced
draft fans and boiler feed water pumps
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Types of power electronic converters

1. Rectifiers (AC to DC converters): These converters convert constant ac voltage to variable
dc output voltage.

2. Choppers (DC to DC converters): Dc chopper converts fixed dc voltage to a controllable dc
output voltage.

3. Inverters (DC to AC converters): An inverter converts fixed dc voltage to a variable ac
output voltage.

4. AC voltage controllers: These converters converts fixed ac voltage to a variable ac output
voltage at same frequency.

5. Cycloconverters: These circuits convert input power at one frequency to output power at a
different frequency through one stage conversion.
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Thyristors — Silicon Controlled Rectifiers (SCR’s)

A silicon controlled rectifier or semiconductor-controlled rectifier is a four-layer solidstate
current- controlling device. The name "silicon controlled rectifier" is General Electric's
trade name for a type of thyristor.
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SCRs are mainly used in electronic devices that require control of high voltage and power.
This makes them applicable in medium and high AC power operations such as motor
control function.

An SCR conducts when a gate pulse is applied to it, just like a diode. It has four layers of
semiconductors that form two structures namely; NPNP or PNPN. In addition, it has three
junctions labeled as J1, J2 and J3 and three terminals(anode, cathode and a gate). An SCR
is diagramatically represented as shown below.
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Anode

b 4

—
Gate Cathode

Figure: 5.4. Symbol of thyristor

The anode connects to the P-type, cathode to the N-type and the gate to the P-type as
shown below.

s3ee -3, ByERLE ot DA e O d-dF BV SeedIDToZ

ROBIEN3T.
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Anode
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Figure: 5.5. Structure of thyristor
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In an SCR, the intrinsic semiconductor is silicon to which the required dopants are infused.
However, doping a PNPN junction is dependent on the SCR application.

20T SCR Y, ©0303 wlwddy DT &8N, TS, eariéémd e 0e39),
W¥ReORUNHBA.

BTN, D) AR BOFRF FRedONT O] 80° 938eBR* eheeS B0DBTNG.

Modes of Operation in SCR

OFF state (forward blocking mode) — Here the anode is assigned a positive voltage, the
gate is assigned a zero voltage (disconnected) and the cathode is assigned a negative
voltage. As a result, Junctions J1 and J3 are in forward bias while J2 is in reverse bias. J2
reaches its breakdown avalanche value and starts to conduct. Below this value, the
resistance of J1 is significantly high and is thus said to be in the off state.

ON state (conducting mode) — An SCR is brought to this state either by increasing the
potential difference between the anode and cathode above the avalanche voltage or by
applying a positive signal at the gate. Immediately the SCR starts to conduct, gate voltage
is no longer needed to maintain the ON state and is, therefore, switched off by —

Decreasing the current flow through it to the lowest value called holding current
Using a transistor placed across the junction.

Reverse blocking — This compensates the drop in forward voltage. This is due to the fact
that a low doped region in P1 is needed. It is important to note that the voltage ratings of
forward and reverse blocking are equal.
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©9,803TerdBE. B PSR, 39, J1 F3deerd NdTdeooN Bed) D) dert e’
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Characteristics of Thyristor

A thyristor is a four layer 3 junction p-n-p-n semiconductor device consisting of at least
three p-n junctions, functioning as an electrical switch for high power operations. It has
three basic terminals, namely the anode, cathode and the gate mounted on the
semiconductor layers of the device. The symbolic diagram and the basic circuit diagram for
determining the characteristics of thyristor is shown in the figure below,
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Characteristics of a Thyristor

G = ? - Va
n . )
a : G
E > w

v e

Gate l
Cathode T Eg
S K

Figure: 5.6. Circuit diagram for characteristics of SCR

From the circuit diagram above we can see the anode and cathode are connected to the
supply voltage through the load. Another secondary supply Es is applied between the gate
and the cathode terminal which supplies for the positive gate current when the switch S is
closed. On giving the supply we get the required V-I characteristics of a thyristor show in
the figure below for anode to cathode voltage V.and anode current I, as we can see from
the circuit diagram. A detailed study of the characteristics reveal that the thyristor has three
basic modes of operation, namely the reverse blocking mode, forward blocking (off-state)
mode and forward conduction (on-state) mode. Which are discussed in great details below,
to understand the overall characteristics of a thyristor.
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Reverse Blocking Mode of Thyristor

Initially for the reverse blocking mode of the thyristor, the cathode is made positive with
respect to anode by supplying voltage E and the gate to cathode supply voltage Es is
detached initially by keeping switch S open. For understanding this mode we should look
into the fourth quadrant where the thyristor is reverse biased.
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Figure: 5.7. Reverse blocking mode of SCR

Here Junctions J; and J3 are reverse biased whereas the junction J; is forward biased. The
behavior of the thyristor here is similar to that of two diodes are connected in series with
reverse voltage applied across them. As a result only a small leakage current of the order of
a few pAmps flows. This is the reverse blocking mode or the off-state, of the thyristor. If
the reverse voltage is now increased, then at a particular voltage, known as the critical
breakdown voltage Vgr, an avalanche occurs at J; and J; and the reverse current increases
rapidly. A large current associated with Ver gives rise to more losses in the SCR, which
results in heating. This may lead to thyristor damage as the junction temperature may
exceed its permissible temperature rise. It should, therefore, be ensured that maximum
working reverse voltage across a thyristor does not exceed Vgr. When reverse voltage
applied across a thyristor is less than Vg, the device offers very high impedance in the
reverse direction. The SCR in the reverse blocking mode may therefore be treated as open
circuit.

Q0 20BN J1 D) J3 OTTE DF@BDNGT, ROZR' J2 TTETE DFwoBwNT. R
3,03,3¢ SBeF0dn OB BaleegroZahe ADIT, OIYNwer 0l BT FpedS eedn odrt
Ce30h) Jomse BRoDT. BOBecHTN FuFe MAmMps BOWNT FRT JeSL 20T TeY
el Bod. AR 0T BBAWS SReTE D 85° %3, thyristor . &, 8 ped ees
O BN BLYAITT, DTS B B dpeeees IDBTF 2ot ST WS ADFS,
Fpede ©, J1 D) 13 FO dD@Te3Y) J0BIDBT DB Hbdw, B BB Sencon
BeIHBB.  Iesrie FowoBAB wold BB I[DedR) AQBIFY TS ST,

BVOEVTIIRDBT, VD DI FBEITNBT. VD §;0T0° Tt SoTeserimcd
200



MODULE 5

03083 B0ZY SeBIRY) VB0 VRDDETUT TeBFTORN HOBDRY, WeTVBD.
353003, 20w c;féarv;mscﬁéos nog 3T DD 0TTF Jpededs Do C.‘)Ri&
DEDFDY 20D 1BBBBIZRY D). wod FO[IE VZBR, BFTUIT I
Jpedeed QDesNeod sBADDN, TFRY) 0T BT WBY TR F3TRFIY,
QeDBT. Sedw, 2 BBEED,S T SCR BSTO0T B8 FBAFE3° BOMEITVRD.

Y ST 11 31O I3 FoTe GETUTCAT 3Tl X STRleT J2 G& TaTaTclY 31T8. AY thyristor AT
adeT GIeT diodes HHTST 318 cTaAT 3TeligsT A9 3olc Elocl HE Hlldlehd SilSelel 31ed.
AfROTTHT HTET mAmps TIT AT herd Teh FIgTeT aTbell dTe] dlgd. & 3o Regd sallfehal
Ars fhar 316 Ve, ARRISTID. S 3TAT Regd c@leco aledT 3 ¥ Uar afse
cglecolay, ST fhicehel SehsT3+l cgledsl VBR FgULT AW SiTd, fgHEW ele J1 3TOT
13 IR B 30T Regd e 9T arear. sgiar3Rel fFersia e AveT Yarg TaaRREey
K INE FﬂE}’:I'W EFITUﬂ'H\FT LA, ST 9RO eI ey grar. & thyristor GEIG HED
QMehcl STerRTeT ATTHTET AT IRl ATIHTAATEG T&TT STET 31 Ashcd FEULA. IS Teh
thyristor 3TelgeT ST ST ShTH 3ol Sglecsl VBR UETT ST &ATgl ATl WIAT e,
T thyristor 3TeligeT o] 3¢lC Sglecol VBR U&TT ST 311§, degl ATee Joic el Td
3T impedance &d. Regd salifahal AISALY SCR 7L 310l Hidhe HATeTel ST 2hdl.

r s
+lg [ Forward Conduction (on state)

Am
P | Latchmg current

|/ Holding current
Reverse leakage | / 9

.,

current &.f.xf g3 lg2> g L -0
Fl g~
3.4 92,/ A
y VQR “\_i;j" mai _,,,j- (" - 91 -y
Ny i _— A /! T Veo
L Forward Forward leakage
i Blocking Current
Reverse
blocking Vg = Forward breakover voltage

VgRr = Reverse breakover voltage

Ig = Gate Current

_|'a

v

Figure: 5.8. V- | characteristics of SCR
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Forward Blocking Mode Now considering the anode is positive with respect to the
cathode, with gate kept in open condition. The thyristor is now said to be forward biased as
shown the figure below.
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Figure: 5.9. Forward connection of SCR

As we can see the junctions J; and J; are now forward biased but junction J» goes into
reverse biased condition. In this particular mode, a small current, called forward leakage
current is allowed to flow initially as shown in the diagram for characteristics of thyristor.
Now, if we keep on increasing the forward biased anode to cathode voltage.

In this particular mode, the thyristor conducts currents from anode to cathode with a very
small voltage drop across it. A thyristor is brought from forward blocking mode to forward
conduction mode by turning it on by exceeding the forward break over voltage or by
applying a gate pulse between gate and cathode. In this mode, thyristor is in on-state and
behaves like a closed switch. Voltage drop across thyristor in the on state is of the order of
1 to 2 V depending beyond a certain point, then the reverse biased junction J, will have an
avalanche breakdown at a voltage called forward break over voltage Vgo of the thyristor.
But, if we keep the forward voltage less than Vgo, we can see from the characteristics of
thyristor, that the device offers high impedance. Thus even here the thyristor operates as an
open switch during the forward blocking mode.
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Forward Conduction Mode

When the anode to cathode forward voltage is increased, with gate circuit open, the reverse
junction J> will have an avalanche breakdown at forward break over voltage Vgo leading to
thyristor turn on. Once the thyristor is turned on we can see from the diagram for
characteristics of thyristor, that the point M at once shifts toward N and then anywhere
between N and K. Here NK represents the forward conduction mode of the thyristor. In this
mode of operation, the thyristor conducts maximum current with minimum

voltage drop, this is known as the forward conduction forward conduction or the turn on
mode of the thyristor.
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Turn on methods of SCR

The turning on Process of the SCR is known as Triggering. In other words, turning the
SCR from Forward-Blocking state to Forward-Conduction state is known as
Triggering. The various methods of SCR triggering are discussed here.

The various SCR triggering methods are
Forward Voltage Triggering

Thermal or Temperature Triggering
Radiation or Light triggering

dv/dt Triggering

Gate Triggering
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(a) Forward Voltage Triggering:-

In this mode, an additional forward voltage is applied between anode and cathode.

When the anode terminal is positive with respect to cathode (Vak), Junction J1 and J3 is
forward biased and junction J2 is reverse biased.
No current flow due to depletion region in J2 is reverse biased (except leakage current).

As Vak is further increased, at a voltage Vpo (Forward Break Over Voltage) the junction J2
undergoes avalanche breakdown and so a current flows and the device tends to turn
ON(even when gate is open)
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Thermal (or) Temperature Triggering:-
The width of depletion layer of SCR decreases with increase in junction temperature.

Therefore in SCR when Var is very near its breakdown voltage, the device is triggered by
increasing the junction temperature.

By increasing the junction temperature the reverse biased junction collapses thus the device
starts to conduct.

(D) oV (9TD0) ToBSoR ) Nor':-
o 0B SoDRION B PTPolT SCR I ZeedT BWIT N SRS,
o 3008 A BIFY BT’ BT 238 Fpeet e BATID@N, BoFZY SoTLIITBY,

BLDT DRVB TIFITIY, TRIReDIUTMST.
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ROFRY® SIDWOS BT BRWB.0TTE DFDB W0FN WAWNTT &ert ToTFS ITBIW
€8803MH33.

g (ﬁﬁT) Wﬁﬁjﬂ:-

ST ATTHTATT a6 STedTel THAIRTAT g€ AR FET el gid.

CATHS SCR HEY SIET VAR ITTAT SehsT3e cglecoTedl AICT STde 3, TIegl Siehele

YA A6 fSeaTsadT fgar dhel STd.
TR AT dTGde 3elc TTUTH SToFRleT hiTasc 31T FehR HIEleT TR & glcl.

(b) Radiation Triggering (or) Light Triggering:-

For light triggered SCRs a special terminal niche is made inside the inner P layer instead of
gate terminal.
When light is allowed to strike this terminal, free charge carriers are generated.

When intensity of light becomes more than a normal value, the thyristor starts conducting.

This type of SCRs are called as LASCR

2) 8T 00N (BT) 6,65 riBorT:-

e34€3° eZnOon® SCR APVt riees® 3 eSS TN 80308 P IBTBRT TR 3 DEI
MR 3adrdRerrH3a.
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g gl
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TS TRl T cfeTell Teh HIATT Hod A 31f8eh 81 STl §, A UraREe &7 darelet & 81
SraTgl

SH YhR o THETIIR FI TATUHHIIIR FHgl ST &

(c) dv/dt Triggering:-

When the device is forward biased, J1 and J3 are forward biased, J2 is reverse biased.
Junction J2 behaves as a capacitor, due to the charges existing across the junction.

If voltage across the device is V, the <charge by Q and -capacitance
by C then, ic =dQ/dt

Q=CV

ic =d(CV)/dt
=CdV/dt+VdC/dt as dC/dt =0

1c = CdV/dt

Therefore when the rate of change of voltage across the device becomes large, the device
may turn ON, even if the voltage across the device is small.

8) 8 / Bed e3Nore: -

TIGPRY) oI BFweSDeNTYN, J1 D) I3 FoIeTe DFweSDeNwYN, J2 OITE
BZDOBDING.
B0Z’ J2 20T BTV B3EDTT, W0oFN* BN IZ,BOHT 8TReBNYRY, FoTk.
mdaﬁmcﬁéos Speed eed o) Be.Fo33 . oB BTILIRF, DR) BT 0T 2Feee.
ic =dQ/dt
Q=CVv
ic =d(CV)/dt
=CdV/dt+VdC/dt as dC/dt =0
B83008 TFIT VZER, Speders BUITED BT BPBWerboen, TeFIT LVZBR,

et eeF 235, eNGTR, TITFIR) B8R BRI,
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(3) S/ fearfar:-

f3ecgred q& TaTarr 3¢, degl J1 30T J3 g Y&TUTell 3iTed, J2 3o YaTdTell 3iTg.
STl 12 STRIe 3Teligel faeTAT oh SedTHd, Ush HUdel FgU amral.
W&i\ldi‘s\d cglocal ogl 318l oy, FY h&el ﬂﬁﬁ}lﬁ@fw capacitance dicgr,

ic =dQ/dt
Q=Cv

ic =d(CV)/dt

=CdV/dt+VdC/dt as dC/dt =0
ic = Cdv/dt

(d) Gate Triggering:-

This is most widely used SCR triggering method.

Applying a positive voltage between gate and cathode can Turn ON a forward biased
thyristor.

When a positive voltage is applied at the gate terminal, charge carriers are injected in the
inner P- layer, thereby reducing the depletion layer thickness.

As the applied voltage increases, the carrier injection increases, therefore the voltage at
which forward break-over occurs decreases.

(e) riees® e3RBore:

QD @3603 ma@smﬁ QYT SCR RO JpeS=Na.

rfeer DI FyBeer IS B33 Fpeddees oF) OFDRDIBOT Bwod BFDeSBT
&,05,0° 0=, 8xF S

riee3® ascﬁ)FRSq(ef)m B85 ypeetees C.‘)Ri& ,00ATIN, WS maswa& WIN -
BT 2ed erH BT, RBO0TN FesSRS TR B S, BB ST,

3,003 Fpeed eeFf B3B3, DB ROBZS B VBT, 8F00T FwoBB, wHBainIB0dn
B0 Feeed eeF BRDTHB3.

(§) 3re feaTRar:-
T TATd ATSIT FHTOTER dToel SCR fEIR ggd 31R.
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Figure: 5. 10. V - | characteristics of SCR

= Three types of signals are used for gate triggering.

1. DC gate triggering:-

= A DC voltage of proper polarity is applied between gate and cathode ( Gate terminal is
positive with respect to Cathode).

= When applied voltage is sufficient to produce the required gate Current, the device starts
conducting.

* One drawback of this scheme is that both power and control circuits are DC and there is no
isolation between the two.

* Another disadvantage is that a continuous DC signal has to be applied. So gate power loss
is high.
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2. AC Gate Triggering:-

Here AC source is used for gate signals.
This scheme provides proper isolation between power and control circuit.
Drawback of this scheme is that a separate transformer is required to step down ac supply.

There are two methods of AC voltage triggering namely (i) R Triggering (ii) RC triggering

rfees® e3Nort Swedh Dedadb BoBeBRYR) WIBUIMDST.

1. 8R riees Irdeed3: -

riees® SR) FyBeer SBB IS ydeabZab oD B Bpeddees o3
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€8803mH33.
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S Ted).
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1. Y e fEarRar:-
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o W] ElecST ATATH AT FC dAR FIUITATS I 3Tg, gl FrereT AT & gl

o I YISTITT Ueh GIY 31T 378 chl U TTOT shelol fehe aleal ST 38 d 37TOT Sraaey
JITSYOTT ATET. 3TUTHY Teh IRENT TS Tl SIAT FAIeTeT 1] AT AT TS T
RTeFciT T ST 37T

2. Tt st feaTRar:-
o JY THI AT I ATl aTIRel T
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(i) Resistance triggering:

The following circuit shows the resistance triggering.

Load

Sourcef 1 C

Figure: 5.11. Resistance triggering circuit of SCR

= In this method, the variable resistance R is used to control the gate current.
= Depending upon the value of R, when the magnitude of the gate current reaches the
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sufficient value(latching current of the device) the SCR starts to conduct.

The diode D is called as blocking diode. It prevents the gate cathode junction from getting
damaged in the negative half cycle.

By considering that the gate circuit is purely resistive, the gate current is in phase with the
applied voltage.

By using this method we can achieve maximum firing angle up to 90°.

(i) B300e3 ric:

85 QDIITO, riets’ BBy Aohod ey Sedabresf &3dRes 8T° R WYTTIMHST.
RS BP0, B0, e’ BT0Bd Byeoew) TS, VB, SIWN (FIBIT
SDBIY, 92307 STIWDF) SCR SBJ ©59,B0DDIT.

Baleer 8 O wez® Badeed o0t SBUINDBE. W) SFe0e3,B G BT riees
59,GRetE 20ZR* HoAWNEod SBodST.

riee3® 53@5&3‘ ToRPEFDIN ABREFFTNG 20T BN Swes, et TDodI)
e953,d03 Fpee) g2l 00t BoBTAT.

8 IPITSY, WIDIBO0TW Fec3) 90deg STt RO 3001 BpeTSIY THTVBD.

ii) IfaRTer feart &hda:

3R AT HeATaR faeldsd, Siegl AT e TRAVT RN Hed (Begrsa aciae) gdd
dIgred dogl THE3R dTefquard gedld Hid.
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I AT ST Tiaeiad .
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(i) RC Triggering
The following circuit shows the resistance-capacitance triggering.

Load

géi rce @ T

Figure: 5. 12. Resistance Capacitance triggering circuit of SCR

* By using this method we can achieve firing angle more than 90°.

= In the positive half cycle, the capacitor is charged through the variable resistance R up to
the peak value of the applied voltage.
= The variable resistor R controls the charging time of the capacitor.

= Depends upon the voltage across the capacitor, when sufficient amount of gate current will
flow in the circuit, the SCR starts to conduct.

= In the negative half cycle, the capacitor C is charged up to the negative peak value through
the diode D2.

= Diode D1 is used to prevent the reverse break down of the gate cathode junction in the
negative half cycle.

ii) 8¢ 3300

o B DRI WIDPHBO0T JocY) 90deg 3,08 Ted) ;007 BeITY, ToHTBD.

° B33 o5 WZBO BHadL0* A3 FeeddeF nog SRS STt Bedabraes
B,3dRer B30°F 108 IOTTNH3T.

o Jedabrer ATRERS B8T° oI o ort FTHALBRY, AohoZDIT.

* BHILNT 03 eSS R VBV, VERFEIO TIBR), T e BDoBDY)
®00ineen, SCR BB @9 BoIT.

o IJB0eB,B T WBTWY, o3V Q Bodeew D2 e SE03,3 N0 3)’90537\5& 301
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(ii) 3T fearfar
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. Pulse Gate Triggering:-

In this method the gate drive consists of a single pulse appearing periodically (or) a
sequence of high frequency pulses.
This is known as carrier frequency gating.

A pulse transformer is used for isolation.

The main advantage is that there is no need of applying continuous signals, so the gate
losses are reduced.
Advantages of pulse train triggering:

Low gate dissipation at higher gate current.
Small gate isolating pulse transformer

Low dissipation in reverse biased condition is possible. So simple trigger circuits are
possible in some cases
When the first trigger pulse fails to trigger the SCR, the following pulses can succeed in
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latching SCR. This important while
Triggering inductive circuits and circuits having back emf's.

w

. DS riees* e3ndort: -
8 IPIITO 1iee @éac AoDBBoOBDN FedABRRN,T (9T9) 20T Tl Ww¥eold
OB BTIER Q,BY 0w DB,

VT, 5o00TF B, rieedort owd BobrHI3.

o T8 By, DT BT BT WYSUILTT.

Swa) HBRVBBT IB0BT BoBeBRTIRY, WS NSy, 83T riees® IFMW
BRD DS,

B B0 Be3eends OIRVNW:

B3 riees BB BB riees ITRES.

<63 e’ T3eSB DI £33, DET* DT BZDS YB0hY) BB JeJewad Tag;.
530080 JTY R0° SBRFEIRD B SoBIFNYO TG AT

- SRTO L0° T8 SCR O, FrIReDTLW V@, B¥NS BBY T Md SCR O
erace3on’ Srerdiae) 0h3,0ireriIET.

YT AW OPIY, BRODDS Fedeetdd JBRELW D) JBRELVIY FR0* Srerdezen
QT BaTNG.

Turn off methods of SCR:

SCR can be turned ON by applying appropriate positive gate voltage between the gate and
cathode terminals, but it cannot be turned OFF through the gate terminal. The SCR can be
brought back to the

forward blocking state from the forward conduction state by reducing the anode or
forward current below the holding current level.

The turn OFF process of an SCR is called commutation. The term commutation means the
transfer of currents from one path to another. So the commutation circuit does this job by
reducing the forward current to zero so as to turn OFF the SCR or Thyristor.
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To turn OFF the conducting SCR the below conditions must be satisfied.

The anode or forward current of SCR must be reduced to zero or below the level of
holding current and then,
A sufficient reverse voltage must be applied across the SCR to regain its forward blocking
state.

When the SCR is turned OFF by reducing forward current to zero there exist excess charge
carriers in different layers. To regain the forward blocking state of an SCR, these excess
carriers must be recombined. Therefore, this recombination process is accelerated by
applying a reverse voltage across the SCR.

SCR S 837°F 85° JPaSNY: riees® R azsc;ifaea“ BDFIVY IDS WeBDTW B33 riees
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SCR Turn OFF Methods

The reverse voltage which causes to commutate the SCR is called commutation voltage.
Depending on the commutation voltage located, the commutation methods are classified
into two major types.
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Those are 1) Forced commutation and 2) Natural commutation. Let us discuss in brief
about these methods.

Forced Commutation

In case of DC circuits, there is no natural current zero to turn OFF the SCR. In such
circuits, forward current must be forced to zero with an external circuit to commutate the
SCR hence named as forced commutation.

This commutating circuit consists of components like inductors and capacitors called as
commutating components. These commutating components cause to apply a reverse
voltage across the SCR that immediately bring the current in the SCR to zero.

Based on the manner in which the zero current achieved and arrangement of
the commutating components, forced commutation is classified into different types such as
class A, B, C, D, and E. This commutation is mainly used in chopper and inverter circuits.
Q) e80° BRFE 85" APORN:
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Q0T BBADrHIT.
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Class A Commutation

This is also known as self commutation, or resonant commutation, or load commutation. In
this commutation, the source of commutation voltage is in the load. This load must be an
under damped R-L- C supplied with a DC supply so that natural zero is obtained.

The commutating components L and C are connected either parallel or series with the load
resistance R as shown below with waveforms of SCR current, voltage and capacitor
voltage.
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Figure: 5. 13. Class A Commutation circuit and waveforms

Load in parallel with capacitor Load in series with capacitor

The value of load resistance and commutating components are so selected that they forms a
under damped resonant circuit to produce natural zero. When the thyristor or SCR is
triggered, the forward currents starts flowing through it and during this the capacitor is
charged up to the value of E.

Once the capacitor is fully charged (more than the supply source voltage) the SCR becomes
reverse biased and hence the commutation of the device. The capacitor discharges through
the load resistance to make ready the circuit for the next cycle of operation. The time for
switching OFF the SCR depends on the resonant frequency which further depends on the L
and C components.

This method is simple and reliable. For high frequency operation which is in the range
above 1000 Hz, this type of commutation circuits is preferred due to the high values of L
and C components.
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Natural Commutation

In natural commutation, the source of commutation voltage is the supply source itself. If
the SCR 1is connected to an AC supply, at every end of the positive half cycle the anode
current goes through the natural current zero and also immediately a reverse voltage is
applied across the SCR. These are the conditions to turn OFF the SCR.

This method of commutation is also called as source commutation, or line commutation, or
class F commutation. This commutation is possible with line commutated inverters,
controlled rectifiers, cyclo converters and AC voltage regulators because the supply is the
AC source in all these converters.
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Figure: 5. 14. Natural Commutation circuit and waveforms
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Resistance Firing Circuit

The circuit below shows the resistance triggering of SCR where it is employed to drive the
load from the input AC supply. Resistance and diode combination circuit acts as a gate
control circuitry to switch the SCR in the desired condition.

As the positive voltage applied, the SCR is forward biased and doesn’t conduct until
1ts gate

current is more than minimum gate current of the SCR.

When the gate current is applied by varying the resistance R2 such that the gate current
should be more than the minimum value of gate current, the SCR is turned ON. And hence
the load current starts flowing through the SCR.

The SCR remains ON until the anode current is equal to the holding current of the SCR.
And it will switch OFF when the voltage applied is zero. So the load current is zero as the
SCR acts as open switch.

The diode protects the gate drive circuit from reverse gate voltage during the negative half
cycle of the input. And Resistance R1 limits the current flowing through the gate terminal
and its value is such that the gate current should not exceed the maximum gate current.

It is the simplest and economical type of triggering but limited for few applications due to
its disadvantages.

In this, the triggering angle is limited to 90 degrees only. Because the applied voltage is
maximum at 90 degrees so the gate current has to reach minimum gate current value
somewhere between zero to 90 degrees.
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Figure: 5. 15. R Firing circuit for SCR and corresponding waveforms
Resistance — Capacitacne (RC) Firing Circuit

The limitation of resistance firing circuit can be overcome by the RC triggering circuit
which provides the firing angle control from 0 to 180 degrees. By changing the phase and
amplitude of the gate current, a large variation of firing angle is obtained using this circuit.
Below figure shows the RC triggering circuit consisting of two diodes with an RC network
connected to turn the SCR.

By varying the variable resistance, triggering or firing angle is controlled in a full positive
half cycle of the input signal.

During the negative half cycle of the input signal, capacitor charges with lower plate
positive through diode D2 up to the maximum supply voltage Vmax. This voltage remains
at -Vmax across the capacitor till supply voltage attains zero crossing.

During the positive half cycle of the input, the SCR becomes forward biased and the
capacitor starts charging through variable resistance to the triggering voltage value of the
SCR.

When the capacitor charging voltage is equal to the gate trigger voltage, SCR is turned ON
and the capacitor holds a small voltage. Therefore the capacitor voltage is helpful for
triggering the SCR even after 90 degrees of the input waveform.

In this, diode D1 prevents the negative voltage between the gate and cathode during the
negative half cycle of the input through diode D2.
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Figure: 5. 16. R Firing circuit for SCR
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Figure: 5. 17. R Firing circuit waveforms of SCR
UJT Firing Circuit

It is the most common method of triggering the SCR because the prolonged pulses at the
gate using R and RC triggering methods cause more power dissipation at the gate so by
using UJT (Uni Junction Transistor) as triggering device the power loss is limited as it
produce a train of pulses.

The RC network is connected to the emitter terminal of the UJT which forms the timing
circuit. The capacitor is fixed while the resistance is variable and hence the charging rate of
the capacitor depends on the variable resistance means that the controlling of the RC time
constant.

When the voltage is applied, the capacitor starts charging through the variable resistance.
By varying the resistance value voltage across the capacitor get varied. Once the capacitor
voltage is equal to the peak value of the UJT, it starts conducting and hence produce a
pulse output till the voltage across the capacitor equal to the valley voltage Vv of the UJT.
This process repeats and produces a train of pulses at base terminal 1.

The pulse output at the base terminal 1 is used to turn ON the SCR at predetermined time
intervals
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Figure: 5.18. UJT Firing circuit for SCR and corresponding waveforms
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